
Provable Data Possession at Untrusted Stores ∗

Giuseppe Ateniese† Randal Burns† Reza Curtmola† Joseph Herring†

Lea Kissner ‡ Zachary Peterson† Dawn Song §

ABSTRACT
We introduce a model for provable data possession (PDP)

that allows a client that has stored data at an untrusted
server to verify that the server possesses the original data
without retrieving it. The model generates probabilistic
proofs of possession by sampling random sets of blocks from
the server, which drastically reduces I/O costs. The client
maintains a constant amount of metadata to verify the proof.
The challenge/response protocol transmits a small, constant
amount of data, which minimizes network communication.
Thus, the PDP model for remote data checking supports
large data sets in widely-distributed storage systems.

We present two provably-secure PDP schemes that are
more efficient than previous solutions, even when compared
with schemes that achieve weaker guarantees. In particular,
the overhead at the server is low (or even constant), as op-
posed to linear in the size of the data. Experiments using
our implementation verify the practicality of PDP and re-
veal that the performance of PDP is bounded by disk I/O
and not by cryptographic computation.

Categories and Subject Descriptors
H.3.2 [Information Storage and Retrieval]: Informa-

tion Storage.; E.3 [Data Encryption]

General Terms
Security, Performance

Keywords
Provable data possession, PDP, homomorphic verifiable

tags, archival storage, storage security

†Department of Computer Science, Johns Hopkins
University, Baltimore, MD – {ateniese, randal,
crix}@cs.jhu.edu, jrh@jhu.edu, zachary@cs.jhu.edu
‡Google, Inc. – leak@cs.cmu.edu
§University of California Berkeley/Carnegie Mellon Univer-
sity – dawnsong@cs.berkeley.edu∗An extended version of the paper is available as IACR
ePrint report 2007/202 [3].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’07, October 29–November 2, 2007, Alexandria, Virginia, USA.
Copyright 2007 ACM 978-1-59593-703-2/07/0010 ...$5.00.

1. Introduction
Verifying the authenticity of data has emerged as a critical

issue in storing data on untrusted servers. It arises in peer-
to-peer storage systems [29, 35], network file systems [30,
26], long-term archives [32], web-service object stores [46],
and database systems [31]. Such systems prevent storage
servers from misrepresenting or modifying data by providing
authenticity checks when accessing data.

However, archival storage requires guarantees about the
authenticity of data on storage, namely that storage servers
possess data. It is insufficient to detect that data have been
modified or deleted when accessing the data, because it may
be too late to recover lost or damaged data. Archival storage
servers retain tremendous amounts of data, little of which
are accessed. They also hold data for long periods of time
during which there may be exposure to data loss from ad-
ministration errors as the physical implementation of storage
evolves, e.g., backup and restore, data migration to new sys-
tems, and changing memberships in peer-to-peer systems.

Archival network storage presents unique performance de-
mands. Given that file data are large and are stored at re-
mote sites, accessing an entire file is expensive in I/O costs
to the storage server and in transmitting the file across a net-
work. Reading an entire archive, even periodically, greatly
limits the scalability of network stores. (The growth in stor-
age capacity has far outstripped the growth in storage access
times and bandwidth [44]). Furthermore, I/O incurred to
establish data possession interferes with on-demand band-
width to store and retrieve data. We conclude that clients
need to be able to verify that a server has retained file data
without retrieving the data from the server and without hav-
ing the server access the entire file.

Previous solutions do not meet these requirements for
proving data possession. Some schemes [20] provide a
weaker guarantee by enforcing storage complexity : The
server has to store an amount of data at least as large as
the client’s data, but not necessarily the same exact data.
Moreover, all previous techniques require the server to ac-
cess the entire file, which is not feasible when dealing with
large amounts of data.

We define a model for provable data possession (PDP)
that provides probabilistic proof that a third party stores
a file. The model is unique in that it allows the server to
access small portions of the file in generating the proof; all
other techniques must access the entire file. Within this
model, we give the first provably-secure scheme for remote
data checking. The client stores a small O(1) amount of
metadata to verify the server’s proof. Also, the scheme uses

598

O(1) bandwidth1. The challenge and the response are each
slightly more than 1 Kilobit. We also present a more efficient
version of this scheme that proves data possession using a
single modular exponentiation at the server, even though it
provides a weaker guarantee.

Both schemes use homomorphic verifiable tags. Because
of the homomorphic property, tags computed for multiple
file blocks can be combined into a single value. The client
pre-computes tags for each block of a file and then stores
the file and its tags with a server. At a later time, the client
can verify that the server possesses the file by generating
a random challenge against a randomly selected set of file
blocks. Using the queried blocks and their corresponding
tags, the server generates a proof of possession. The client
is thus convinced of data possession, without actually having
to retrieve file blocks.

The efficient PDP scheme is the fundamental construct
underlying an archival introspection system that we are
developing for the long-term preservation of Astronomy
data. We are taking possession of multi-terabyte Astron-
omy databases at a University library in order to preserve
the information long after the research projects and instru-
ments used to collect the data are gone. The database will
be replicated at multiple sites. Sites include resource-sharing
partners that exchange storage capacity to achieve reliabil-
ity and scale. As such, the system is subject to freeload-
ing in which partners attempt to use storage resources and
contribute none of their own [20]. The location and physi-
cal implementation of these replicas are managed indepen-
dently by each partner and will evolve over time. Partners
may even outsource storage to third-party storage server
providers [23]. Efficient PDP schemes will ensure that the
computational requirements of remote data checking do not
unduly burden the remote storage sites.

We implemented our more efficient scheme (E-PDP) and
two other remote data checking protocols and evaluated
their performance. Experiments show that probabilistic pos-
session guarantees make it practical to verify possession of
large data sets. With sampling, E-PDP verifies a 64MB file
in about 0.4 seconds as compared to 1.8 seconds without
sampling. Further, I/O bounds the performance of E-PDP;
it generates proofs as quickly as the disk produces data. Fi-
nally, E-PDP is 185 times faster than the previous secure
protocol on 768 KB files.

Contributions. In this paper we:

formally define protocols for provable data possession
(PDP) that provide probabilistic proof that a third
party stores a file.

introduce the first provably-secure and practical PDP
schemes that guarantee data possession.

implement one of our PDP schemes and show experi-
mentally that probabilistic possession guarantees make
it practical to verify possession of large data sets.

Our PDP schemes provide several features such as public
verifiability and data format independence, which are rele-
vant in practical deployments (more details on this in the
remarks of Section 4.3). Moreover, our schemes put no re-
striction on the number of times the client can challenge the
server to prove data possession.

1Storage overhead and network overhead are constant in the
size of the file, but depend on the chosen security parameter.

F client F'

m

client generates
metadata (m) and
modifed file (F')

client store server store

m F'

input file

no server
processing

(a) Pre-process and store

client

m

(1) client generates a
random challenge R

client store server store

m F'

(3) client verifies
server's proof

server

(2) server computes
proof of possession P

F'

R

P0/1

(b) Verify server possession

Figure 1: Protocol for provable data possession.

Paper Organization. The rest of the paper is organized as
follows. In Section 2, we describe a framework for provable
data possession, emphasizing the features and parameters
that are relevant for PDP. Section 3 overviews related work.
In Section 4, we introduce homomorphic verifiable tags, fol-
lowed by definitions for PDP schemes and then we give our
constructions (S-PDP and E-PDP). We support our theo-
retical claims with experiments that show the practicality
of our schemes in Section 5 and conclude in Section 6.

2. Provable Data Possession (PDP)
We describe a framework for provable data possession.

This provides background for related work and for the spe-
cific description of our schemes. A PDP protocol (Fig. 1)
checks that an outsourced storage site retains a file, which
consists of a collection of n blocks. The client C (data owner)
pre-processes the file, generating a piece of metadata that
is stored locally, transmits the file to the server S, and may
delete its local copy. The server stores the file and responds
to challenges issued by the client. Storage at the server is in
Ω(n) and storage at the client is in O(1), conforming to our
notion of an outsourced storage relationship.

As part of pre-processing, the client may alter the file to
be stored at the server. The client may expand the file or
include additional metadata to be stored at the server. Be-
fore deleting its local copy of the file, the client may execute
a data possession challenge to make sure the server has suc-
cessfully stored the file. Clients may encrypt a file prior to
out-sourcing the storage. For our purposes, encryption is
an orthogonal issue; the “file”may consist of encrypted data
and our metadata does not include encryption keys.

At a later time, the client issues a challenge to the server
to establish that the server has retained the file. The client

599

[20] [20]-Wagner [17, 19] [41] [40] S-PDP E-PDP
(MHT-SC) (B-PDP)

Data possession No No Yes Yes Yes
∗

Yes Yes

Supports sampling No No No No No
†

Yes Yes

Type of guarantee deterministic
probabilistic /

probabilistic
deterministic

Server block access O(n) O(log n) O(n) O(n) O(n) O(1) O(1)

Server computation O(n) O(1) O(n) O(1) O(n) O(1) O(1)

Client computation O(1) O(1) O(1) O(1) O(1) O(1) O(1)

Communication O(1) O(log n) O(1) O(1) O(n) O(1) O(1)

Client storage O(1) O(1) O(1) O(n) O(1) O(1) O(1)

Table 1: Features and parameters (per challenge) of various PDP schemes when the server misbehaves by
deleting a fraction of an n-block file (e.g., 1% of n). The server and client computation is expressed as the
total cost of performing modular exponentiation operations. For simplicity, the security parameter is not
included as a factor for the relevant costs.
∗ No security proof is given for this scheme, so assurance of data possession is not confirmed.
† The client can ask proof for select symbols inside a block, but cannot sample across blocks.

requests that the server compute a function of the stored file,
which it sends back to the client. Using its local metadata,
the client verifies the response.

Threat model. The server S must answer challenges from
the client C; failure to do so represents a data loss. However,
the server is not trusted: Even though the file is totally or
partially missing, S may try to convince C that it possesses
the file. The server’s motivation for misbehavior can be di-
verse and includes reclaiming storage by discarding data that
has not been or is rarely accessed (for monetary reasons), or
hiding a data loss incident (due to management errors, hard-
ware failure, compromise by outside or inside attacks etc).
The goal of a PDP scheme that achieves probabilistic proof
of data possession is to detect server misbehavior when the
server has deleted a fraction of the file.

Requirements and Parameters. The important perfor-
mance parameters of a PDP scheme include:

Computation complexity: The computational cost to
pre-process a file (at C), to generate a proof of pos-
session (at S) and to verify such a proof (at C);

Block access complexity: The number of file blocks ac-
cessed to generate a proof of possession (at S);

Communication complexity: The amount of data trans-
ferred (between C and S).

For a scalable solution, the amount of computation and
block accesses at the server should be minimized, because
the server may be involved in concurrent interactions with
many clients. We stress that in order to minimize bandwidth,
an efficient PDPscheme cannot consist of retrieving entire
file blocks. While relevant, the computation complexity at
the client is of less importance, even though our schemes
minimize that as well.

To meet these performance goals, our PDP schemes sam-
ple the server’s storage, accessing a random subset of blocks.
In doing so, the PDP schemes provide a probabilistic guar-
antee of possession; a deterministic guarantee cannot be pro-
vided without accessing all blocks. In fact, as a special case
of our PDP scheme, the client may ask proof for all the file
blocks, making the data possession guarantee determinis-
tic. Sampling proves data possession with high probability
based on accessing few blocks in the file, which radically

alters the performance of proving data possession. Interest-
ingly, when the server deletes a fraction of the file, the client
can detect server misbehavior with high probability by ask-
ing proof for a constant amount of blocks, independently of
the total number of file blocks. As an example, for a file with
n = 10, 000 blocks, if S has deleted 1% of the blocks, then C
can detect server misbehavior with probability greater than
99% by asking proof of possession for only 460 randomly se-
lected blocks (representing 4.6% of n). For more details see
Section 5.1.

We list the features of our PDP schemes (S-PDP and
E-PDP) in Table 1. We also include a comparison of re-
lated techniques [20], [17, 19](B-PDP), [41] and [40]. The
scheme [20]-Wagner (MHT-SC) refers to the variant sug-
gested by David Wagner [20], based on Merkle hash trees.
Both schemes in [20] do not provide a data possession guar-
antee, but only enforce storage complexity. Indeed, as noted
by Golle et al. [20], the server could pass the verification pro-
cedure by using (and storing) a different file, which is at least
as big as the original one. We emphasize that PDP schemes
that offer an inherently deterministic guarantee by access-
ing all the blocks of the file ([20, 17, 19]) cannot offer both
sampling across blocks and constant storage on the client;
fundamental changes would be required in these schemes
in order to avoid storing O(n) metadata on the client. The
scheme in [40] allows the client to request proof of possession
of segments from each file block. However, the server’s re-
sponse includes one “signature”per each block, which makes
its size linear with respect to the number of blocks.

Our PDP schemes provide additional features such as pub-
lic verifiability and data format independence, which extend
the applicability of PDP in practical deployments (more de-
tails on this in the remarks of Section 4.3). For example, the
advantages of having public verifiability are akin to those of
public key over symmetric key cryptography. These features
also motivated the design of our schemes.

A“strawman”solution. We notice that if one is willing to
allow the server to send entire file blocks back to the client
as proof of possession, then a simple solution is possible.
Initially, the client computes a message authentication code
(MAC) for each file block and stores the MACs at the server.
Later, to obtain a probabilistic proof of data possession, the

600

client retrieves a number of randomly selected file blocks and
their corresponding MACs. However, this solution requires
an arbitrarily large amount of bandwidth, which is linear
with respect to the number of queried blocks. In contrast,
our solutions have constant network communication.

3. Related Work
Deswarte et al. [17] and Filho et al. [19] provide techniques

to verify that a remote server stores a file using RSA-based
hash functions. Unlike other hash-based approaches, it al-
lows a client to perform multiple challenges using the same
metadata. In this protocol, communication and client stor-
age complexity are both O(1). The limitation of the algo-
rithm lies in the computational complexity at the server,
which must exponentiate the entire file, accessing all of the
file’s blocks. Further, RSA over the entire file is extremely
slow — 20 seconds per Megabyte for 1024-bit keys on a
3.0 GHz processor [19]. In fact, these limitations led us to
study algorithms that allowed for sub-file access (sampling).
We implement this protocol for comparison with our PDP
scheme and refer to it as B-PDP (basic PDP). A descrip-
tion of B-PDP is provided in the full version of the paper
[3]. Shah et al. [42] use a similar technique for third-party
auditing of data stored at online service providers and put
forth some of the challenges associated with this problem.

Schwarz and Miller [40] propose a scheme that allows a
client to verify the storage of m/n erasure-coded data across
multiple sites even if sites collude. The data possession guar-
antee is achieved using a special construct, called an “alge-
braic signature”: A function that fingerprints a block and
has the property that the signature of the parity block equals
the parity of the signatures of the data blocks. The parame-
ters of the scheme limit its applicability: The file access and
computation complexity at the server and the communica-
tion complexity are all linear in the number of file blocks
(n) per challenge. Additionally, the security of the scheme
is not proven and remains in question.

Sebe et al. [41] give a protocol for remote file integrity
checking, based on the Diffie-Hellman problem in ZN . The
client stores N bits per block (N is the size of an RSA mod-
ulus), so the storage on the client is O(n) (which does not
conform to our notion of an outsourced storage relationship).
Indeed, the authors state that this solution only makes sense
if the size of a block is much larger than N . Moreover, the
protocol requires the server to access the entire file.

Homomorphic hash functions have been used in source
authentication, e.g., to verify data transfer in a pay-for-
bandwidth content distribution network. Krohn et al. [28]
provide the best example and give a good review of other
applications of homomorphic hashing. They use homomor-
phism to compose multiple blocks inputs into a single value.
However, this protocol can only compose specific subsets
of blocks, based on erasure coding. Source authentication
techniques do not apply to provable data possession.

Related to provable data possession is the enforcement
of storage complexity, which shows that a server retains
an amount of information at least as large as the file re-
ceived from the client; the server does not necessarily retain
the original file. To the best of our knowledge, Golle et al.
[20] were the first to propose a scheme that enforces storage
complexity, based on a new assumption (n-Power Decisional
Diffie-Hellman). Their scheme considers a different setting
that involves three parties and provides two additional fea-

tures (binding and concealing) that resemble commitment
schemes. Golle et al. also briefly mention a scheme sug-
gested by David Wagner, based on Merkle hash trees, which
lowers the computational requirements for the server at the
expense of increased communication. We implement Wag-
ner’s suggestion for comparison with our PDP scheme and
refer to it as MHT-SC. A description of MHT-SC is provided
in the full version of the paper [3].

Oprea et al. [39] propose a scheme based on tweakable
block ciphers that allows a client to detect the modification
of data blocks by an untrusted server. The scheme does not
require additional storage at the server and if the client’s
data has low entropy then the client only needs to keep a rel-
atively low amount of state. However, verification requires
the entire file to be retrieved, which means that the server
file access and communication complexity are both linear
with the file size per challenge. The scheme is targeted for
data retrieval. It is impractical for verifying data possession.

Memory checking protocols [12, 37] verify that all reads
and writes to a remote memory behave identically to reads
and writes to a local memory. PDP is a restricted form
of memory checking in that memory checking verifies every
read and write generated from a program at any granularity.
Due to this restriction, memory checking is much more dif-
ficult and expensive than proving data possession. Related
to PDP, Naor and Rothblum introduced the problem of sub-
linear authentication [37], verifying that a file stored on a
remote server has not been significantly corrupted. They
show that the existence of one-way functions is an essential
condition for efficient online checking.

Similar to PDP, Juels and Kaliski introduce the notion of
proof of retrievability (POR) [25], which allows a server to
convince a client that it can retrieve a file that was previously
stored at the server. The main POR scheme uses sentinels
disguised among regular file blocks in order to detect data
modification by the server. Although comparable in scope
with PDP, the POR scheme can only be applied to encrypted
files and can handle only a limited number of queries, which
has to be fixed a priori. In contrast, our PDP schemes can
be applied to (large) public databases (i.e., digital libraries,
astronomy/medical/legal repositories, archives, etc.) other
than encrypted ones. In addition, much like public-key sig-
natures, our scheme allows anyone to verify data possession,
not just the data owner (public verifiability).

An alternative to checking remote storage is to make data
resistant to undetectable deletion through entanglement [45,
2], which encodes data to create dependencies among un-
related data throughout the storage system. Thus, delet-
ing any data reveals itself as it deletes other unrelated data
throughout the system.

Our homomorphic verifiable tags are related with the con-
cept of homomorphic signatures introduced by Johnson et
al. [24]. As pointed out by the same authors, fully-additive
homomorphic signature schemes cannot be secure; our ho-
momorphic verifiable tags are able to achieve a form of mes-
sage homomorphism under addition because of their special
structure that uses one-time indices.

The PDP solutions that we present are the first schemes
that securely prove the possession of data on an untrusted
server and are computationally efficient, i.e., require a con-
stant number of modular exponentiations and have constant
I/O complexity. This makes our PDP solutions the first
schemes suitable for implementation in large data systems.

601

4. Provable Data Possession Schemes

4.1 Preliminaries

The client C wants to store on the server S a file F which
is a finite ordered collection of n blocks: F = (m1, . . . , mn).
We denote the output x of an algorithm A by x← A.

Homomorphic Verifiable Tags (HVTs). We introduce
the concept of a homomorphic verifiable tag that will be
used as a building block for our PDP schemes.

Given a message m (corresponding to a file block), we de-
note by Tm its homomorphic verifiable tag. The tags will be
stored on the server together with the file F. Homomorphic
verifiable tags act as verification metadata for the file blocks
and, besides being unforgeable, they also have the following
properties:

Blockless verification: Using HVTs the server can con-
struct a proof that allows the client to verify if the server
possesses certain file blocks, even when the client does not
have access to the actual file blocks.

Homomorphic tags: Given two values Tmi and Tmj , anyone
can combine them into a value Tmi+mj corresponding to the
sum of the messages mi + mj .

In our construction, an HVT is a pair of values (Ti,m, Wi),
where Wi is a random value obtained from an index i and
Ti,m is stored at the server. The index i can be seen as
a one-time index because it is never reused for computing
tags (a simple way to ensure that every tag uses a different
index i is to use a global counter for i). The random value Wi

is generated by applying a pseudo-random function on the
index i, which ensures that Wi is different and unpredictable
each time a tag is computed. HVTs and their corresponding
proofs have a fixed constant size and are (much) smaller than
the actual file blocks.

We emphasize that techniques based on aggregate signa-
tures [13], multi-signatures [33, 38], batch RSA [18], batch
verification of RSA [22, 4], condensed RSA [36], etc. would
all fail to provide blockless verification, which is needed by
our PDP scheme. Indeed, the client has to have the ability
to verify the tags on specific file blocks even though he does
not possess any of those blocks.

4.2 Definitions

We start with the precise definition of a provable data
possession scheme, followed by a security definition that cap-
tures the data possession property.

Definition 4.1. (Provable Data Possession Scheme
(PDP)) A PDP scheme is a collection of four polynomial-
time algorithms (KeyGen, TagBlock, GenProof , CheckProof)
such that:

KeyGen(1k) → (pk, sk) is a probabilistic key generation al-
gorithm that is run by the client to setup the scheme.
It takes a security parameter k as input, and returns a
pair of matching public and secret keys (pk, sk).

TagBlock(sk, m) → Tm is a (possibly probabilistic) algorithm
run by the client to generate the verification metadata.
It takes as inputs a secret key sk and a file block m,
and returns the verification metadata Tm.

GenProof(pk, F, chal, Σ) → V is run by the server in order to
generate a proof of possession. It takes as inputs a pub-
lic key pk, an ordered collection F of blocks, a challenge
chal and an ordered collection Σ which is the verification

metadata corresponding to the blocks in F. It returns a
proof of possession V for the blocks in F that are deter-
mined by the challenge chal.

CheckProof(pk, sk, chal,V) → {“success”, “failure”} is run
by the client in order to validate a proof of possession.
It takes as inputs a public key pk, a secret key sk, a
challenge chal and a proof of possession V. It returns
whether V is a correct proof of possession for the blocks
determined by chal.

A PDP system can be constructed from a PDP scheme in
two phases, Setup and Challenge:

Setup: The client C is in possession of the file F and
runs (pk, sk) ← KeyGen(1k), followed by Tmi ←
TagBlock(sk, mi) for all 1 ≤ i ≤ n. C stores the pair
(sk, pk). C then sends pk, F and Σ = (Tm1 , . . . , Tmn) to
S for storage and deletes F and Σ from its local storage.

Challenge: C generates a challenge chal that, among other
things, indicates the specific blocks for which C wants
a proof of possession. C then sends chal to S. S runs
V ← GenProof(pk, F, chal, Σ) and sends to C the proof
of possession V. Finally, C can check the validity of the
proof V by running CheckProof(pk, sk, chal,V).

In the Setup phase, C computes tags for each file block
and stores them together with the file at S. In the Challenge
phase, C requests proof of possession for a subset of the
blocks in F. This phase can be executed an unlimited num-
ber of times in order to ascertain whether S still possesses
the selected blocks.

We state the security for a PDP system using a game that
captures the data possession property. Intuitively, the Data
Possession Game captures that an adversary cannot success-
fully construct a valid proof without possessing all the blocks
corresponding to a given challenge, unless it guesses all the
missing blocks.
Data Possession Game:

Setup: The challenger runs (pk, sk) ← KeyGen(1k),
sends pk to the adversary and keeps sk secret.

Query: The adversary makes tagging queries adap-
tively: It selects a block m1 and sends it to the chal-
lenger. The challenger computes the verification meta-
data Tm1 ← TagBlock(sk, m1) and sends it back to
the adversary. The adversary continues to query the
challenger for the verification metadata Tm2 , . . . , Tmn

on the blocks of its choice m2, . . . , mn. As a general
rule, the challenger generates Tmj for some 1 ≤ j ≤ n,
by computing Tmj ← TagBlock(sk, mj). The adver-
sary then stores all the blocks as an ordered collection
F = (m1, . . . , mn), together with the corresponding ver-
ification metadata Tm1 , . . . , Tmn . At any point, the ad-
versary can check the validity of the tags received.

Challenge: The challenger generates a challenge chal
and requests the adversary to provide a proof of pos-
session for the blocks mi1 , . . . , mic determined by chal,
where 1 ≤ ij ≤ n, 1 ≤ j ≤ c, 1 ≤ c ≤ n.

Forge: The adversary computes a proof of possession
V for the blocks indicated by chal and returns V.

If CheckProof(pk, sk, chal,V) = “success”, then the adver-
sary has won the Data Possession Game.

Definition 4.2. A PDP system (Setup, Challenge) built
on a PDP scheme (KeyGen, TagBlock, GenProof , CheckProof)

602

guarantees data possession if for any (probabilistic polynomial-
time) adversary A the probability that A wins the Data Pos-
session Game on a set of file blocks is negligibly close to the
probability that the challenger can extract those file blocks by
means of a knowledge extractor E .

In our security definition, the notion of a knowledge ex-
tractor is similar with the standard one introduced in the
context of proofs of knowledge [5]. If the adversary is able to
win the Data Possession Game, then E can execute GenProof
repeatedly until it extracts the selected blocks. On the other
hand, if E cannot extract the blocks, then the adversary can-
not win the game with more than negligible probability. We
refer the reader to [25] for a more generic and extraction-
based security definition for POR and to [37] for the security
definition of sub-linear authenticators.

4.3 Efficient and Secure PDP Schemes

In this section we present our PDP constructions: The
first (S-PDP) provides a strong data possession guarantee,
while the second (E-PDP) achieves better efficiency at the
cost of weakening the data possession guarantee.

We start by introducing some additional notation used
by the constructions. Let p = 2p′ + 1 and q = 2q′ + 1
be safe primes and let N = pq be an RSA modulus. Let
g be a generator of QRN , the unique cyclic subgroup of
Z

∗
N of order p′q′ (i.e., QRN is the set of quadratic residues

modulo N). We can obtain g as g = a2, where a
R← Z

∗
N such

that gcd(a ± 1, N) = 1. All exponentiations are performed
modulo N , and for simplicity we sometimes omit writing it
explicitly. Let h : {0, 1}∗ → QRN be a secure deterministic
hash-and-encode function2 that maps strings uniformly to
QRN .

The schemes are based on the KEA1 assumption which
was introduced by Damgard in 1991 [14] and subsequently
used by several others, most notably in [21, 6, 7, 27, 16]. In
particular, Bellare and Palacio [6] provided a formulation of
KEA1, that we follow and adapt to work in the RSA ring:

KEA1-r (Knowledge of Exponent Assumption): For any
adversary A that takes input (N, g, gs) and returns (C, Y)
such that Y = Cs, there exists an “extractor” Ā which,
given the same inputs as A, returns x such that gx = C.

Recently, KEA1 has been shown to hold in generic groups
(i.e., it is secure in the generic group model) by A. Dent [15]
and independently by Abe and Fehr [1]. Later in this section,
we also show an alternative strategy which does not rely on
the KEA1-r assumption, at the cost of increased network
communication.

S-PDP overview. We first give an overview of our prov-
able data possession scheme that supports sampling. In the
Setup phase, the client computes a homomorphic verifiable
tag (Ti,mi , Wi) for each block mi of the file. In order to main-
tain constant storage, the client generates the random values
Wi using a pseudo-random function; thus, TagBlock has an
extra parameter, i. Each value Ti,mi includes information
about the index i of the block mi, in the form of a value

2h is computed by squaring the output of the full-domain
hash function for the provably secure FDH signature scheme
[8, 9] based on RSA. We refer the reader to [8] for ways to
construct an FDH function out of regular hash functions,
such as SHA-1. Alternatively, h can be the deterministic
encoding function used in RSA-PSS[10]

h(Wi), as Wi is obtained from i by using a pseudo-random
function3. This binds the tag on a block to that specific
block, and prevents using the tag to obtain a proof for a
different block. These tags are stored on the server together
with the file F. The extra storage at the server is the price to
pay for allowing thin clients that only store a small, constant
amount of data, regardless of the file size.

In the Challenge phase, the client asks the server for proof
of possession of c file blocks whose indices are randomly
chosen using a pseudo-random permutation keyed with a
fresh randomly-chosen key for each challenge. This prevents
the server from anticipating which blocks will be queried in
each challenge. C also generates a fresh (random) challenge
gs = gs to ensure that S does not reuse any values from
a previous Challenge phase. The server returns a proof of
possession that consists of two values: T and ρ. T is obtained
by combining into a single value the individual tags Ti,mi

corresponding to each of the requested blocks. ρ is obtained
by raising the challenge gs to a function of the requested
blocks. The value T contains information about the indices
of the blocks requested by the client (in the form of the h(Wi)
values). C can remove all the h(Wi) values from T because it
has both the key for the pseudo-random permutation (used
to determine the indices of the requested blocks) and the key
for the pseudo-random function (used to generate the values
Wi). C can then verify the validity of the server’s proof by
checking if a certain relation holds between T and ρ.

S-PDP in detail. Let κ, � be security parameters and let H
be a cryptographic hash function. In addition, we make use
of two pseudo-random functions (PRF) f, w, and a pseudo-
random permutation (PRP) π with the following parame-
ters:

f : {0, 1}κ × {0, 1}log2(n) → {0, 1}�;
w : {0, 1}κ × {0, 1}log2(n) → {0, 1}�;
π : {0, 1}κ × {0, 1}log2(n) → {0, 1}log2(n)

We write fk(x) to denote f keyed with key k applied on
input x. Our S-PDP scheme is described in Fig. 2. The pur-
pose of including the the aj coefficients in the values for ρ
and T computed by S is to ensure that S possesses each one
of the requested blocks. These coefficients are determined
by a PRF keyed with a fresh randomly-chosen key for each
challenge, which prevents S from storing combinations (e.g.,
sums) of the original blocks instead of the original file blocks
themselves. Also, we are able to maintain constant commu-
nication cost because tags on blocks can be combined into a
single value.

In Appendix A, we prove:

Theorem 4.3. Under the RSA and KEA1-r assump-
tions, S-PDP guarantees data possession in the random or-
acle model.

Regarding efficiency, we remark that each challenge re-
quires a small, constant amount of communication between
C and S (the challenge and the response are each slightly

3“Hashing” the output of the PRF serves three main pur-
poses. First, h(·) is also an encoding function which maps
string into QRN . Secondly, when public verifiability is en-
abled, the security proof of our scheme requires the pres-
ence of h(·). Lastly, if h(·) is not used then, given valid
pairs (Ti,mi , Wi), anyone can compute a new pair (Tn,mn , Wn)
on a new message mn and this impairs the applicability of
homomorphic tags in other contexts.

603

As previously defined, let f and w be pseudo-random func-
tions, let π be a pseudo-random permutation and let H be a
cryptographic hash function.

KeyGen(1k): Generate pk = (N, e, g) and sk = (N, d, v),
such that (N, e) and (N, d) are matching RSA public and

secret keys, and v
R← {0, 1}κ. Output (pk, sk).

TagBlock(sk, m, i):

1. Let (N, d, v) = sk. Generate Wi = wv(i). Compute

Ti,m = (h(Wi) · gm)d mod N .

2. Output (Ti,m, Wi).

GenProof(pk, F = (m1, . . . , mn), chal, Σ = (T1,m1 , . . . ,
Tn,mn)):

1. Let (N, e, g) = pk and (c, k1, k2, gs) = chal.
For 1 ≤ j ≤ c:

• compute the indices of the blocks for which the
proof is generated: ij = πk1(j)

• compute coefficients: aj = fk2(j).

2. Compute T = T
a1
i1,mi1

· . . . · Tac
ic,mic

=

(h(Wi1)a1 · . . . ·h(Wic)ac ·ga1mi1+...+acmic)d mod N .
(note that Tij ,mij

is the ij -th value in Σ).

3. Compute ρ = H(g
a1mi1+...+acmic
s mod N).

4. Output V = (T, ρ).

CheckProof(pk, sk, chal,V):

1. Let (N, e, g) = pk, v = sk, (c, k1, k2, s) = chal and
(T, ρ) = V .

2. Let τ = Te. For 1 ≤ j ≤ c:

• compute ij = πk1(j), Wij
= wv(ij),

aj = fk2 (j), and τ =
τ

h(Wij
)aj

mod N .

(As a result, one should get

τ = ga1mi1+...+acmic mod N)

3. If H(τs mod N) = ρ, then output “success”. Other-
wise output “failure”.

We construct a PDP system from a PDP scheme in two
phases, Setup and Challenge:

Setup: The client C runs (pk, sk) ← KeyGen(1k), followed
by (Ti,mi

, Wi)← TagBlock(sk, mi, i) for all 1 ≤ i ≤ n (note
that TagBlock has an extra parameter, i, since the random
values Wi are generated using a PRF). C stores the pair
(sk, pk). C then sends pk, F and Σ = (T1,m1 , . . . , Tn,mn) to
S for storage and deletes F and Σ from its local storage.

Challenge: C requests proof of possession for c distinct
blocks of the file F (with 1 ≤ c ≤ n):

1. C generates the challenge chal = (c, k1, k2, gs), where

k1
R← {0, 1}κ, k2

R← {0, 1}κ, gs = gs mod N and

s
R← Z

∗
N . C sends chal to S.

2. S runs V ← GenProof(pk, F, chal, Σ = (T1,m1 , . . . ,
Tn,mn)) and sends to C the proof of possession V .

3. C sets chal = (c, k1, k2, s) and checks the validity of
the proof V by running CheckProof(pk, v, chal,V).

Figure 2: S-PDP: a PDP scheme with strong data
possession guarantee

more than 1 Kilobit). In terms of server block access, the
demands are c accesses for S, while in terms of computa-
tion we have c exponentiations for both C and S. When S
deletes a fraction of the file blocks, c is a relatively small,
constant value, which gives the O(1) parameters in Table 1

(for more details, see Section 5.1). Since the size of the file is
O(n), accommodating the additional tags does not change
(asymptotically) the storage requirements for the server.

In our analysis we assume w.l.o.g. that the indices for the
blocks picked by the client in a challenge are different. One
way to achieve this is to implement π using the techniques
proposed by Black and Rogaway [11]. In a practical deploy-
ment, our protocol can tolerate collisions of these indices.
Moreover, notice that the client can dynamically append
new blocks to the stored file after the Setup phase, without
re-tagging the entire file.

Notice that the server may store the client’s file F however
it sees fit, as long as it is able to recover the file when an-
swering a challenge. For example, it is allowed to compress F
(e.g., if all the blocks of F are identical, then the server may
only store one full block and the information that all the
blocks are equal). Alternatively, w.l.o.g., one could assume
that F has been optimally compressed by the client and the
size of F is equal to F’s information entropy function.

A concrete example of using S-PDP. For a concrete
example of using S-PDP, we consider a 1024-bit modulus N
and a 4 GB file F which has n = 1, 000, 000 4KB blocks.
During Setup, C stores the file and the tags at S. The tags
require additional storage of 128 MB. The client stores less
than 2048 bits (N has 1024 bits and e, d, v have less than
1024 bits). During the Challenge phase, C and S use AES
for π (used to select the random block indices i), HMAC
for w (used to compute the random values W), HMAC for f
(used to determine the random coefficients a) and SHA1 for
H . In a challenge, C sends to S four values which total 168
bytes (c has 4 bytes, k1 has 16 bytes, k2 has 20 bytes, gs has
1024 bits). Assuming that S deletes at least 1% of F, then
C can detect server misbehavior with probability over 99%
by asking proof for c = 460 randomly selected blocks. The
server’s response contains two values which total 148 bytes
(T has 1024 bits, ρ has 20 bytes). We emphasize that the
server’s response to a challenge consists of a small, constant
value; in particular, the server does not send back to the
client any of the file blocks and not even their sum.

A more efficient scheme, with weaker guarantees
(E-PDP). Our S-PDP scheme provides the guarantee that
S possesses each one of the c blocks for which C requested
proof of possession in a challenge. We now describe a
more efficient variant of S-PDP, which we call E-PDP, that
achieves better performance at the cost of offering weaker
guarantees. E-PDP differs from S-PDP only in that all the
coefficients aj are equal to 1:

In GenProof (steps 2 and 3) the server computes T =

Ti1,m1 · . . . · Tic,mc and ρ = H(g
mi1+...+mic
s mod N).

In CheckProof (step 2) the client computes τ =
Te

h(Wi1) · . . . · h(Wic)
mod N .

The E-PDP scheme reduces the computation on both the
server and the the client to one exponentiation, as described
in Table 1 (see Server Computation details in Section 5.2,
the server computes ρ as one exponentiation to a value whose
size in bits is slightly larger than |mi|). E-PDP only guar-
antees possession of the sum of the blocks mi1 + . . . + mic

and not necessarily possession of each one of the blocks for
which the client requests proof of possession. However, we
argue next that this is not a practical concern.

604

c (number of queried blocks) (as a percentage of n)

n
(n

um
be

r
of

 fi
le

 b
lo

ck
s)

0.99

0.9
0.80.70.6

0.5

 0 5 10 15 20
 0

 2000

 4000

 6000

 8000

 10000

(a) t = 1% of n

c (number of queried blocks) (as a percentage of n)

n
(n

um
be

r
of

 fi
le

 b
lo

ck
s)

0.99

0.90.80.70.6
0.5

 0 1 2 3 4 5
 0

 2000

 4000

 6000

 8000

 10000

(b) t = 5% of n

Figure 3: PX , the probability of server misbehavior detection. We show PX as a function of n (the number
of file blocks) and c (the number of blocks queried by the client, shown as a percentage of n) for two values
of t (the number of blocks deleted by the server). Note that each graph has a different scale.

If the server pre-computes and stores the sums of all pos-
sible combinations of c blocks out of the n blocks (

�
n

n−c

�
values), then the server could successfully pass any chal-
lenge. When using E-PDP, the client needs to choose the
parameters of the scheme such that it is infeasible for the
server to misbehave by pre-computing and storing all these
sums. For example, if n = 1000 and c = 101, the server
needs to pre-compute and store ≈ 10140 values and might
be better off trying to factor N . The client can also reduce
the server’s ability to misbehave by choosing c as a prime
integer and by using a different c value for each challenge.

An alternative strategy. Instead of the value ρ, the server
S could send the sum of the queried blocks as an integer (S
does not know the order of QRN) and let C verify the proof
of possession using this value. Thus, we will not have to rely
on the KEA1-r assumption. However, network communica-
tion will increase by a significant amount.

In addition, notice that any solution based on proofs of
knowledge of the sum would require even more bandwidth
than just sending the sum itself. This is, again, because S
does not know the order of QRN and would have to work
with large integers.

Remark 1 (Public Verifiability). Our PDP schemes
provide public verifiability : After the initial Setup phase,
the client (data owner) can publish N, e, g and v (the key
for PRF w) so that anyone can challenge the server to ver-
ify data possession. The rest of the protocol remains un-
changed.

Remark 2 (Prime-order Group Variant). Alterna-
tively, our PDP schemes can be modified to work within
a group of a publicly-known prime order q. In this case,
however, file blocks (seen as integers) must be less than q,
otherwise the server could simply store them reduced mod-
ulo q. In a prime-order setting, network communication is
further reduced (particularly in the elliptic curve setting),
but pre-processing becomes more expensive given the small
size of the file blocks. In contrast, the RSA setting allows us
to work with arbitrarily large file blocks. Most importantly,
the prime-order group variant does not provide the public
verifiability property.

Remark 3 (Data Format Independence). Our PDP
schemes put no restriction on the format of the data, in par-
ticular files stored at the server do not have to be encrypted.
This feature is very relevant since we anticipate that PDP
schemes will have the biggest impact when used with large
public repositories.

Remark 4 (Multiple Files). We have described PDP
schemes for the case when a client stores a single file F on
the server. In the TagBlock algorithm, for each block mi the
client computes a tag over the tuple (Wi, mi). We emphasize
that the values Wi cannot be reused. Since Wi is obtained
from i using a PRF, this implies that the indices i must be
different across all tags. In other words, the client should not
use the same index twice for computing tags. This condition
holds because in our scheme an index i is simply the position
of the block mi in the file.

In order to store multiple files on the server, the client
must ensure that indices used to compute tags are dis-
tinct not only across the tags corresponding to the blocks
of each file, but also across the tags corresponding to the
blocks of all files. A simple method to achieve this is to
pre-pend the file’s identifier to the index. For example, if
the identifier of a file F = (m1, . . . , mn) is given by id(F),
then for each block mi, 1 ≤ i ≤ n, C computes the
tag (Tid(F)||i,mi

, Wid(F)||i) ← TagBlock(sk, mi, id(F)||i). The
uniqueness of indices is ensured if each file has a unique iden-
tifier. Another simple way to ensure that indices are only
used once is to use a global counter for the index, which is
incremented by the client each time after a tag is computed.

5. System Implementation and Perfor-
mance Evaluation

5.1 Probabilistic Framework

Our PDP schemes allow the server to prove possession of
select blocks of F. This “sampling” ability greatly reduces
the workload on the server, while still achieving detection
of server misbehavior with high probability. We now ana-
lyze the probabilistic guarantees offered by a scheme that
supports block sampling.

605

Assume S deletes t blocks out of the n-block file F. Let
c be the number of different blocks for which C asks proof
in a challenge. Let X be a discrete random variable that is
defined to be the number of blocks chosen by C that match
the blocks deleted by S. We compute PX , the probability
that at least one of the blocks picked by C matches one of
the blocks deleted by S. We have:

PX = P{X ≥ 1} = 1 − P{X = 0} = 1 − n− t

n
· n− 1− t

n− 1
·

n− 2− t

n− 2
· . . . · n− c + 1− t

n− c + 1
. Since

n− i− t

n− i
≥ n− i− 1− t

n− i− 1
,

it follows that: 1−
�

n− t

n

�c

≤ PX ≤ 1−
�

n− c + 1− t

n− c + 1

�c

.

PX indicates the probability that, if S deletes t blocks
of the file, then C will detect server misbehavior after a
challenge in which it asks proof for c blocks. Fig. 3 plots
PX for different values of n, t, c. Interestingly, when t is a
fraction of the file, C can detect server misbehavior with a
certain probability by asking proof for a constant amount of
blocks, independently of the total number of file blocks: e.g.,
if t = 1% of n, then C asks for 460 blocks and 300 blocks in
order to achieve PX of at least 99% and 95%, respectively.

5.2 Implementation and Experimental Results

We measure the performance of E-PDP and the benefits of
sampling based on our implementation of E-PDP in Linux.
As a basis for comparison, we have also implemented the
scheme of Deswarte et al. [17] and Filho et al. [19] (B-PDP),
and the more efficient scheme in [20] (MHT-SC) suggested
by David Wagner (these schemes are described in the full
version of the paper [3]).

All experiments were conducted on an Intel 2.8 GHz Pen-
tium IV system with a 512 KB cache, an 800 MHz EPCI
bus, and 1024 MB of RAM. The system runs Red Hat Linux
9, kernel version 2.4.22. Algorithms use the crypto library
of OpenSSL version 0.9.8b with a modulus N of size 1024
bits and files have 4KB blocks. Experiments that measure
disk I/O performance do so by storing files on an ext3 file
system on a Seagate Barracuda 7200.7 (ST380011A) 80GB
Ultra ATA/100 drive. All experimental results represent the
mean of 20 trials. Because results varied little across trials,
we do not present confidence intervals.

Sampling. To quantify the performance benefits of sam-
pling for E-PDP, we compare the client and server perfor-
mance for detecting 1% missing or faulty data at 95% and
99% confidence (Fig. 4). These results are compared with
using E-PDP over all blocks of the file at large file sizes, up
to 64 MB. We measure both the computation time only (in
memory) as well as the overall time (on disk), which includes
I/O costs.

Examining all blocks uses time linear in the file size for
files larger than 4MB. This is the point at which the compu-
tation becomes bound from either memory or disk through-
put. Larger inputs amortize the cost of the single exponen-
tiation required by E-PDP. This is also the point at which
the performance of sampling diverges. The number of blocks
needed to achieve the target confidence level governs perfor-
mance.

For larger files, E-PDP generates data as fast as it can be
accessed from memory and summed, because it only com-
putes a single exponentiation. In E-PDP, the server gener-
ates

�c
i=1 mi, which it exponentiates. The maximum size of

this quantity in bits is |mi|+ log2(c); its maximum value is

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 10000 20000 30000 40000 50000 60000

File Size (KB)

T
im

e
(s

ec
on

ds
)

All Blocks
99%
95%

(a) Server (in cache)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 10000 20000 30000 40000 50000 60000

File Size (KB)
T

im
e

(s
ec

on
ds

)

All Blocks
99%
95%

(b) Server (on disk)

Figure 4: Performance of sampling at multiple con-
fidence levels.

c·2|mi |. Thus, the cryptographic costs grows logarithmically
in the file size. The linear cost of accessing all data blocks
and computing the sum dominate this logarithmic growth.

Comparing results when data are on disk versus in cache
shows that disk throughput bounds E-PDP’s performance
when accessing all blocks. With the exception of the first
blocks of a file, I/O and the challenge computation occur
in parallel. Thus, E-PDP generates proofs faster than the
disk can deliver data: 1.0 second versus 1.8 seconds for a 64
MB file. Because I/O bounds performance, no protocol can
outperform E-PDP by more than the startup costs. While
faster, multiple-disk storage may remove the I/O bound to-
day. Over time increases in processor speeds will exceed
those of disk bandwidth and the I/O bound will hold.

Sampling breaks the linear scaling relationship between
time to generate a proof of data possession and the size of
the file. At 99% confidence, E-PDP can build a proof of pos-
session for any file, up to 64 MB in size in about 0.4 seconds.
Disk I/O incurs about 0.04 seconds of additional runtime for
larger file sizes over the in-memory results. Sampling per-
formance characterizes the benefits of E-PDP. Probabilistic
guarantees make it practical to use public-key cryptography
constructs to verify possession of very large data sets.

Server Computation. The next experiments look at the
worst-case performance of generating a proof of possession,
which is useful for planning purposes to allow the server to
allocate enough resources. For E-PDP, this means sampling
every block in the file, while for MHT-SC this means com-
puting the entire hash tree. We compare the computation
complexity of E-PDP with other algorithms, which do not

606

0.001

0.01

0.1

1

10

100

1000

0 200 400 600

File Size (KB)

T
im

e
(s

ec
on

ds
)

B-PDP
MHT-SE
E-PDP

(a) Challenge time compared

0.001

0.01

0.1

1

10

100

0 200 400 600

File Size (KB)

T
im

e
(s

ec
on

ds
)

B-PDP
MHT-SE
E-PDP

(b) Pre-processing time compared

Figure 5: Computation performance.

support sampling. All schemes perform an equivalent num-
ber of disk and memory accesses.

In step 3 of the GenProof algorithm of S-PDP, S has two
ways of computing ρ: Either sum the values ajmij (as inte-
gers) and then exponentiate gs to this sum or exponentiate
gs to each value ajmij and then multiply all values. We ob-
served that the former choice takes considerable less time, as
it only involves one exponentiation to a (|mi|+�+log2(c))-bit
number, as opposed to c exponentiations to a (|mi|+ �)-bit
number (typically, � = 160).

Fig. 5(a) shows the computation time as a function of file
size used at the server when computing a proof for B-PDP,
MHT-SC and E-PDP. Note the logarithmic scale. Compu-
tation time includes the time to access the memory blocks
that contain file data in cache. We restrict this experiment
to files of 768 KB or less, because of the amount of time
consumed by B-PDP.

E-PDP radically alters the complexity of data posses-
sion protocols and even outperforms protocols that provide
weaker guarantees, specifically MHT-SC. For files of 768 KB,
E-PDP is more than 185 times faster than B-PDP and more
than 4.5 times as fast as MHT-SC. These performance ra-
tios become arbitrarily large for larger file sizes. For B-PDP
performance grows linearly with the file size, because it ex-
ponentiates the entire file. For MHT-SC, performance also
grows linearly, but in disjoint clusters which represent the
height of the Merkle-tree needed to represent a file of that
size.

Pre-Processing. In preparing a file for outsourced stor-
age, the client generates its local metadata. In this experi-

0

20

40

60

80

100

120

1000 10000 100000 1000000
Block Size (KB)

T
im

e
(s

ec
on

ds
)

Challenge
Pre-Process

Figure 6: E-PDP pre-processing vs. challenge trade-
offs with block size for a 1 GB file.

ment, we measure the processor time for metadata genera-
tion only. This does not include the I/O time to load data
to the client or store metadata to disk, nor does it include
the time to transfer the file to the server. Fig. 5(b) shows
the pre-processing time as a function of file size for B-PDP,
MHT-SC and E-PDP.

E-PDP exhibits slower pre-processing performance. The
costs grow linearly with the file size at 162 KB/s. E-PDP
performs an exponentiation on every block of the file in order
to create the per-block tags. For MHT-SC, preprocessing
performance mirrors challenge performance, because both
protocol steps perform the same computation. It generates
data at about 433 KB/s on average.

The preprocessing performance of B-PDP differs from the
challenge phase even though both steps compute the exact
same signature. This is because the client has access to φ(N)
and can reduce the file modulo φ(N) before exponentiating.
In contrast, the security of the protocol depends on φ(N)
being a secret that is unavailable to the server. The prepro-
cessing costs comprise a single exponentiation and comput-
ing a modulus against the entire file.

E-PDP also exponentiates data that was reduced modulo
φ(N) but does not reap the same speed up, because it must
do so for every block. This creates a natural trade-off be-
tween preprocessing time and challenge time by varying the
block size; e.g., the protocol devolves to B-PDP for files of a
single block. Fig. 6 shows this trade-off and indicates that
the best balance occurs at natural file system and memory
blocks sizes of 4-64 KB. We choose a block size of 4K in
order to minimize the server’s effort.

Given the efficiency of computing challenges, pre-processing
represents the limiting performance factor for E-PDP. The
rate at which clients can generate data to outsource bounds
the overall system performance perceived by the client.
However, there are several mitigating factors. (1) Outsourc-
ing data is a one time task, as compared to challenging out-
sourced data, which will be done repeatedly. (2) The process
is completely parallelizable. Each file can be processed in-
dependently at a different processor. A single file can be
parallelized trivially if processors share key material.

6. Conclusion
We focused on the problem of verifying if an untrusted

server stores a client’s data. We introduced a model for

607

provable data possession, in which it is desirable to mini-
mize the file block accesses, the computation on the server,
and the client-server communication. Our solutions for PDP
fit this model: They incur a low (or even constant) overhead
at the server and require a small, constant amount of com-
munication per challenge. Key components of our schemes
are the homomorphic verifiable tags. They allow to verify
data possession without having access to the actual data file.

Experiments show that our schemes, which offer a prob-
abilistic possession guarantee by sampling the server’s stor-
age, make it practical to verify possession of large data sets.
Previous schemes that do not allow sampling are not practi-
cal when PDP is used to prove possession of large amounts of
data. Our experiments show that such schemes also impose
a significant I/O and computational burden on the server.

7. Acknowledgments
This work was supported in part by NSF awards CCF-

0238305 and IIS-0456027 and by the IBM Corporation.
We thank Gene Tsudik, Susan Hohenberger, Roberto Di
Pietro, Luigi Mancini, Răzvan Musăloiu-E., Seny Kamara,
and Brent Waters for their insightful comments.

8. References
[1] M. Abe and S. Fehr. Perfect NIZK with adaptive soundness. In

Proc. of Theory of Cryptography Conference (TCC ’07),
2007. Full version available on Cryptology ePrint Archive,
Report 2006/423.

[2] J. Aspnes, J. Feigenbaum, A. Yampolskiy, and S. Zhong.
Towards a theory of data entanglement. In Proc. of Euro.
Symp. on Research in Computer Security, 2004.

[3] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner,
Z. Peterson, and D. Song. Provable data possession at
untrusted stores. Cryptology ePrint archive, May 2007. Report
2007/202.

[4] M. Bellare, J. Garay, and T. Rabin. Fast batch verification for
modular exponentiation and digital signatures. In Proc. of
EUROCRYPT ’98, LNCS, pages 236–250, 1998.

[5] M. Bellare and O. Goldreich. On defining proofs of knowledge.
In Proc. of CRYPTO ’92, pages 390–420, 1992.

[6] M. Bellare and A. Palacio. The knowledge-of-exponent
assumptions and 3-round zero-knowledge protocols. In Proc. of
CRYPTO ’04, LNCS, pages 273–289. Springer, 2004.

[7] M. Bellare and A. Palacio. Towards plaintext-aware public-key
encryption without random oracles. In Proc. of ASIACRYPT
’04, volume 3329 of LNCS, pages 48–62. Springer, 2004.

[8] M. Bellare and P. Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In Proc. of CCS’93,
pages 62–73. ACM, 1993.

[9] M. Bellare and P. Rogaway. The exact security of digital
signatures - How to sign with RSA and Rabin. In
EUROCRYPT, pages 399–416, 1996.

[10] M. Bellare and P. Rogaway. PSS: Provably secure encoding
method for digital signatures. IEEE P1363a: Provably secure
signatures, 1998.
http://grouper.ieee.org/groups/1363/P1363a/PSSigs.html.

[11] J. Black and P. Rogaway. Ciphers with arbitrary finite
domains. In Proc. of CT-RSA, pages 114–130, 2002.

[12] M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor.
Checking the correctness of memories. In Proc. of FOCS ’95.

[13] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate
and verifiably encrypted signatures from bilinear maps. In
Proc. of EUROCRYPT ’03, pages 416–432, 2003.

[14] I. Damg̊ard. Towards practical public key systems secure
against chosen ciphertext attacks. In J. Feigenbaum, editor,
CRYPTO91, volume 576, pages 445–456. Springer, 1992.

[15] A. W. Dent. The hardness of the DHK problem in the generic
group model. Cryptology ePrint Archive, Report 2006/156.

[16] A. W. Dent. The Cramer-Shoup encryption scheme is plaintext
aware in the standard model. In Proc. of EUROCRYPT ’06,
volume 4004 of LNCS, pages 289–307. Springer, 2006.

[17] Y. Deswarte, J.-J. Quisquater, and A. Saidane. Remote
integrity checking. In Proc. of Conference on Integrity and

Internal Control in Information Systems ’03, Nov 2003.

[18] A. Fiat. Batch RSA. In G. Brassard, editor, Proc. CRYPTO
89, pages 175–185. Springer-Verlag, 1990.

[19] D. L. G. Filho and P. S. L. M. Baretto. Demonstrating data
possession and uncheatable data transfer. IACR ePrint archive,
2006. Report 2006/150.

[20] P. Golle, S. Jarecki, and I. Mironov. Cryptographic primitives
enforcing communication and storage complexity. In Proc. of
Financial Cryptography, 2002.

[21] S. Hada and T. Tanaka. On the existence of 3-round
zero-knowledge protocols. In Proc. of CRYPTO ’98, volume
1462 of LNCS, pages 408–423. Springer, 1998.

[22] L. Harn. Batch verifying multiple RSA digital signatures.
Electronics Letters, 34(12):1219–1220, 1998.

[23] R. Hasan, W. Yurcik, and S. Myagmar. The evolution of
storage server providers: Techniques and challenges to
outsourcing storage. In Proc. of the Workshop on Storage
Security and Survivability, 2005.

[24] R. Johnson, D. Molnar, D. Song, and D. Wagner.
Homomorphic signature schemes. In Proc. of CT-RSA, volume
2271 of LNCS, pages 244–262. Springer, 2002.

[25] A. Juels and B. S. Kaliski. PORs: Proofs of retrievability for
large files. Cryptology ePrint archive, June 2007. Report
2007/243.

[26] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and
K. Fu. Plutus: Scalable secure file sharing on untrusted
storage. In Proc. of FAST, 2003.

[27] H. Krawczyk. HMQV: A high-performance secure
Diffie-Hellman protocol. In Proc. of CRYPTO ’05, volume
3621 of LNCS, pages 546–566. Springer, 2005.

[28] M. N. Krohn, M. J. Freedman, and D. Mazières. On-the-fly
verification of rateless erasure codes for efficient content
distribution. In Proc. of the IEEE Symposium S&P, 2004.

[29] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,
C. Wells, and B. Zhao. Oceanstore: An architecture for
global-scale persistent storage. In Proc. of ACM ASPLOS ’00.
ACM, November 2000.

[30] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure untrusted
data repository (SUNDR). In Proc. of OSDI, 2004.

[31] U. Maheshwari, R. Vingralek, and W. Shapiro. How to build a
trusted database system on untrusted storage. In Proc. of
OSDI, 2000.

[32] P. Maniatis, M. Roussopoulos, T. Giuli, D. Rosenthal,
M. Baker, and Y. Muliadi. The LOCKSS peer-to-peer digital
preservation system. ACM Transactions on Computing
Systems, 23(1):2–50, 2005.

[33] S. Micali, K. Ohta, and L. Reyzin. Accountable-subgroup
multisignatures: extended abstract. In Proc of ACM CCS ’01.

[34] G. L. Miller. Riemann’s hypothesis and tests for primality.
JCSS, 13(3):300–317, 1976.

[35] A. A. Muthitacharoen, R. Morris., T. M. Gil, and B. Chen. Ivy:
A read/write peer-to-peer file system. In Proc. of OSDI ’02.

[36] E. Mykletun, M. Narasimha, and G. Tsudik. Authentication
and integrity in outsourced databases. In Proc. of NDSS ’04.

[37] M. Naor and G. N. Rothblum. The complexity of online
memory checking. In Proc. of FOCS, 2005. Full version
appears as ePrint Archive Report 2006/091.

[38] T. Okamoto. A digital multisignature schema using bijective
public-key cryptosystems. ACM Transactions on Computer
Systems, 6(4):432–441, 1988.

[39] A. Oprea, M. K. Reiter, and K. Yang. Space-efficient block
storage integrity. In Proc. of NDSS ’05, 2005.

[40] T. S. J. Schwarz and E. L. Miller. Store, forget, and check:
Using algebraic signatures to check remotely administered
storage. In Proc. of ICDCS ’06, 2006.

[41] F. Sebe, A. Martinez-Balleste, Y. Deswarte, J. Domingo-Ferrer,
and J.-J. Quisquater. Time-bounded remote file integrity
checking. Technical Report 04429, LAAS, July 2004.

[42] M. Shah, M. Baker, J. C. Mogul, and R. Swaminathan.
Auditing to keep online storage services honest. In Proc. of
HotOS XI. Usenix, 2007.

[43] A. Shamir. On the generation of cryptographically strong
pseudorandom sequences. ACM Trans. Comput. Syst.,
1(1):38–44, 1983.

[44] D. Thompson and J. Best. The future of magnetic data storage
technology. IBM Journal Research and Development,
44(3):311–319, May 2000.

[45] M. Waldman and D. Mazières. Tangler: a censorship-resistant

608

publishing system based on document entanglements. In Proc.
of CCS, 2001.

[46] A. Y. Yumerefendi and J. Chase. Strong accountability for
network storage. In Proc. of FAST, 2007.

APPENDIX

A. Proof of Theorem 4.3
Under the KEA1-r assumption, we reduce the security of

our S-PDP scheme to the security of the RSA problem and
the security of integer factoring. We assume there exists
an adversary B that wins the Data Possession Game on a
challenge picked byA and show thatA will be able to extract
the blocks determined by the challenge. If B can break the
data possession guarantee of the S-PDP scheme, we show
how to construct an adversary A that uses B in order to
either break RSA or factor the product of two large primes.

For the RSA problem, A is given (N, e, y), with y
R← Z

∗
N ,

and needs to find a value b ≡ y1/e mod N . A will play the
role of the challenger in the Data Possession Game and will
interact with B.

We first look at the case when in GenProof and CheckProof
all the coefficients a1, . . . , ac are equal to 1. This corresponds
to the case where the server proves it possesses the sum of
the requested blocks. We then generalize the proof to the
case where the coefficients are random and pairwise distinct,
which corresponds to the case where the server proves it
possesses each individual block.
A simulates a PDP environment for B as follows:

Setup: A computes g = y2 mod N , sets the public key
pk = (N, e, g) and sends pk to B. A publishes the description
of the PRF w and also generates the corresponding secret

key v
R← {0, 1}κ.

Query: B makes tagging queries adaptively: B selects a
block m1 and is also allowed to select an index i1. B
sends m1 and i1 to A. A generates (Ti1,m1 , Wi1) and
sends it back to B. B continues to query A for the tags
(Ti2,m2 , Wi2), . . . , (Tin,mn , Win) on the blocks m2, . . . , mn and
indices i1, . . . , in of its choice. The only restriction is that B
cannot make tagging queries for two different blocks using
the same index. Once B gets the tag (Ti,mi , Wi) on a block
mi, it may check the tag’s validity by checking if the relation
(Ti,mi)

e = h(Wi) · gmi holds.
When B makes tagging oracle queries and hash oracle

queries, A will answer those queries itself:

when B makes a tagging query for a block m and index i,
with 1 ≤ i ≤ n:
• if a previous tagging query has been made for the same

m and i, then A retrieves the recorded tuple (m, i, ri, Wi)
and returns (Ti,m, Wi), where Ti,m = ri.

• else, A picks ri
R← QRN , computes Wi = wv(i),

records the tuple (m, i, ri, Wi) and returns (Ti,m, Wi),
where Ti,m = ri.

when B makes a hash query for a value Wi:
• if the value Wi is recorded as having been previously used

for a tagging query, then A retrieves the corresponding
tuple (m, i, ri, Wi) and returns h(Wi) = re

i · g−mi mod N .
• else, A picks at random a value from QRN and returns

it.

At the end of the Query phase A can reveal the PRF key
v to B (this is to cover the case when public verifiability is
enabled).

Challenge: A generates the challenge chal = (gs, i1, . . . , ic),

where gs = gs mod N , s
R← Z

∗
N and i1, . . . , ic are the indices

of the blocks for which A requests proof of possession (with
1 ≤ ij ≤ n, 1 ≤ j ≤ c, 1 ≤ c ≤ n). A sends chal to B.

Forge: B generates a proof V = (T, ρ) about the
blocks mi1 , . . . , mic determined by i1, . . . , ic, where T =
T{i1,...,ic},mi1+...+mic

. Note that V is a valid proof that

passes CheckProof(pk, sk, chal,V). B returns V to A and
A checks the validity of V. Let M = mi1 + . . . + mic .

As H is a random oracle, with overwhelming probability
we can extract the pre-image value ρp that B utilized to
calculate ρ. (By the definition of a random oracle, B can
guess a valid value of ρ with only negligible probability.)
A has given B both g, gs and B has implicitly returned

τ =
Te

�c
j=1 h(Wij)

, ρp by returning T, ρ. Because τ s = ρp, by

KEA-1r, A can utilize the extractor B̄ to extract a value
M∗ such that gM∗

= τ .
If M∗ = M , then A was able to successfully extract the

correct message M . We analyze next the case when M∗ �=
M . Note that M∗ is the “full-domain” value utilized by this
calculation. (If the extractor B̄ is able to extract a value

M ′ �= M∗ such that gM′
= gM∗

mod N , this will allow to
compute a multiple of φ(N), from which the factorization of
N can be efficiently computed [34].)

From τ = gM∗
we get Te =

�c
j=1 h(Wij) · gM∗

, where

clearly gM∗ �= gM , and thus: T =
��c

j=1 h(Wij) · gM∗�d

=
��c

j=1(r
e
ij
· g−mij) · gM∗�d

=
�c

j=1 rij ·
�
gM∗−M

�d

A computes:

z =
T�c

j=1 rij

=
�
gM∗−M

�d

We have ze = gM∗−M = y2(M∗−M). Let’s assume that
gcd(e, 2(M∗−M)) = 1 (in fact this always holds if e is prime
and greater than |M∗−M |). Applying Shamir’s “trick” [43],
A uses the extended Euclidian algorithm to efficiently com-
pute integers u and v such that u · e + v · 2(M∗ −M) = 1

and outputs y1/e = yuzv.
Note that the interactions of A with B are indistinguish-

able to B from interactions with an honest challenger in the
Data Possession Game, as A chooses all parameters accord-
ing to our protocol.

The proof generalizes to the case where the coefficients
a1, . . . , ac are random and pairwise distinct. Indeed, in this
case it is enough to apply the same simulation shown above
and in addition to notice that at the end of the simulation
A will be able to extract M̄ = a1mi1 + . . . + acmic . We
now have to show that our protocol constitutes a proof of
knowledge of the blocks mi1 , . . . , mic when a1, . . . , ac are
pairwise distinct. We show that a knowledge extractor E
may extract the file blocks mi1 , . . . , mic . Note that each
time E runs the PDP protocol, he obtains a linear equation of
the form M̄ = a1mi1 +. . .+acmic . By choosing independent
coefficients a1, . . . , ac in c executions of the protocol on the
same blocks mi1 , . . . , mic , E obtains c independent linear
equations in the variables mi1 , . . . , mic . E may then solve
these equations to obtain the file blocks mi1 , . . . , mic .

609

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

