TOWARDS REGULATORY COMPLIANT

STORAGE SYSTEMS

by

Zachary Nathaniel Joseph Peterson

A dissertation submitted to The Johns Hopkins Universitganformity with the requirements for

the degree of Doctor of Philosophy.

Baltimore, Maryland

October, 2006

(© Zachary Nathaniel Joseph Peterson 2006

All rights reserved

Abstract

Legislators have begun to recognize the importance of heatrenically stored
data should be maintained and secured. Similarly, the €tave begun to differentiate
electronic data from their paper analogs. Examples of someeging electronic record
management legislation include: the Health InsuranceaBibity and Accountability Act
(HIPAA) of 1996, the Gramm-Leach-Bliley Act (GLBA) of 199@nd the more recent
Federal Information Security Management Act (FISMA) andb&aes-Oxley Act (SOX)
of 2002. Altogether, there exist over 4,000 acts and reguiathat govern digital storage,
all with a varying range of requirements for maintainingoéenic records.

Many current storage solutions fail to meet the new demaegislation placed
on storage systems. Systems must now provide confideytitbugh encrypted storage
and data transmission. Some legislation requires an dlelitail of changes made to elec-
tronic records that are accessible in real-time. This iegpliersioning files and providing
a means of quickly retrieving versions from any point in tifdgher legislation sets limits
on the amount of time an organization may be liable for maiirtg their electronic data,

but for those data that go out of scope, permanently deletatg from magnetic media

can be challenging. Because electronic data is dynamicthemdfore easily malleable on

disk, new methods for authentication and non-repudiateedrio be developed to ensure
a binding of an individual to an auditable trail of data chesig Further, these systems
must be robust against both external and internal attacksata loss or compromise due
to negligence may result in an organization falling out aim@iiance and susceptible to

litigation.

We present three technical contributions to the field of laiguy compliant stor-
age. The first is an open-source versioning file system dedigmbe a platform for de-
veloping regulatory compliant storage technologies. Vémtimtroduce algorithms and an
architecture for the secure deletion of individual versioha file. Lastly, we construct an
audit trail model for a versioning file system so that the gemmade to data, and the order

in which they occurred, may be verifiable.

Advisor: Randal Burns

Readers: Randal Burns
Avi Rubin
Darrell Long

Acknowledgements

This dissertation is the culmination of six years of gradusthool at two univer-
sities, on two different coasts, completed only with thepgrpof many people. First and
foremost, | deeply thank my adviser and good friend, Randeh8, without whom this
work, let alone any successes I've had as a scientist, wantlthawve been possible. His
support proved unwavering and his guidance unfalteringoddhout our years of working
together, Randal has been more akin to a brother than a lns$sig quick to come to my
aid as to critique my mistakes. This was truly a unique retethip; one of family, rather
than contract. | look forward to being his new peer and cathfriend.

In addition to Randal, | was extremely fortunate to be exfddeea faculty of ex-
ceeding talent and energy. | had the distinct pleasure okimgrclosely with two faculty
members, Avi Rubin and Giuseppe Ateniese, both of whom pgeaime unique opportu-
nities for expanding my research horizons. | am gratefuh@nt both. Of all the faculty,
however, Andreas Terzis was an uncommon counselor. Whétberexchanging new
ideas at the gym or pondering life in front of the Xbox, Andreas always willing to lend

a sympathetic ear and a critical mind. Thank you.

Research is rarely a solo endeavor and throughout my carétopkins | was
priveleged to be able to work with a set of excellent peers.clleagues in the Hopkins
Storage Systems Lab: Alexandros Batsakis, Chuck Wu, Darmgy¥aic Perlman and Tanu
Malik, spent many hours of peer review to benefit me and my warkl for that, | am
indebted. Of particular distinction, Alexandros showedths it's possible to achieve the
rare combination of cool and computer science. OutsideeoHBSL, Adam Stubblefield,
Joe Herring and Steve Bono provided significant insight theoworlds of cryptography
and system design; the foundations of this work.

Special thanks go to Scott Banachowski, who has housed menference trips,
reviewed my workad nauseamshared his love of music with me, and has consistently
been a model of the scientist | aspire to be.

My parents have always been, and continue to be, the coonersf my endeav-
ors. They have made everything possible. | hope to finallyobeta provide them with the
top-notch technical support they deserve. And to my brothedrew, who has shown me
compassion, at all hours, and above all else.

And lastly, | dedicate this work to Jamie Funderburk, who a&hke to make her
love and support known to me both at home and abroad. Herilbotitms to my life are

without measure and will never be forgotten.

Contents

Abstract ii
Acknowledgements v
List of Tables IX
List of Figures X
1 Legislating Storage Systems 1
1.1 Health Insurance Portability and Accountability Act 3
1.1.1 PrivacyRule e
1.1.2 SecurityRule e
1.2 Sarbanes-Oxley Act. e 4
1.2.1 Section302
122 Section404
1.2.3 Section409
124 Section802
1.3 Gramm-Leach-Bliley Act e 6
1.3.1 Financial PrivacyRule 7
1.3.2 SafeguardsRule
1.3.3 Pretexting Protection 7
1.4 Federal Information Security Management Act 8
15 SECRule 17 CFR240.17a-4 e e
1.6 The Courtand Electronic Records iiee ... 9
1.7 Distillingthe Requirements 9
1.7.1 Versioning with Real-Time Access i v i uu. .. 10
1.7.2 SecureDeletion 11
1.7.3 Digital Privacy e 11
1.7.4 Digital Authenticity 12
1.8 Contributions 13

Vi

H W

o O 01 O

2 Ext3cow: A Time-Shifting File System for Regulatory Complance

2.1 Introduction e 15
2.2 RelatedWork e 18
2.3 Time-shifting 21
2.4 MetadataDesign e e e 24
2.4.1 Superblock
242 Inodes e
2.4.3 Directory EntriesandNaming u.. 26
25 \Version Scoping e e e e e e e e e 27
25.1 Scopinglnodes 8
2.5.2 Scoping Directory Entries 28
253 TemporalVnodes 0
2.6 \Versioning with Copy-on-Write e 31
2.6.1 Memory Management
2.6.2 Copy-on-write State bitmaps 34
2.7 Performance Evaluation e . 35
2.7.1 Micro-benchmarks 37
2.7.2 Bonniet+ . .. L
2.7.3 Trace-driven Experiments e 42
2.8 Availability 43
3 Secure Deletion for a Federally Compliant Storage System !
3.1 Introduction L e e 46
3.2 RelatedWork 48
3.3 Secure Deletionwith Versions e 51
3.3.1 AONSecureDeletion 2
3.3.2 Secure Deletion Based on Randomized Keys 56
3.3.3 Other Secure DeletonModels 57
3.3.4 Security Properties e 60
3.4 Architecture 61
3.4.1 Metadata for Secure Deletion 61
3.4.2 The Secure Block Device Driver u.. 63
3.4.3 SecurityPolicies 64
3.5 ExperimentalResults e 65
3,51 TimetoDelete
3.5.2 Bonniet+
3.5.3 Trace-Driven Experiments ua. 70
3.6 Applicability to Other Data Systems 73
4 \Verfiable Audit Trials for a
Federally Compliant Storage System 74
4.1 Introduction e 74
42 RelatedWork e 77
4.3 SecureDigital Audits L e 78
4.4 ASecureVersionHistory e e 81

Vii

4.4.1 Incrementally Calculable MACs 83

4.4.2 File SystemIndependence 85
4.4.3 HierarchiesandFileSystems 86
4.5 File System Implementation 89
45.1 Metadata for Authentication 90

452 KeyManagement
4.6 Experimental Results e 92
4.6.1 Micro-benchmarks 93
4.6.2 Aggregate Performance 95
4.6.3 RequirementsforAuditing 101
4.7 Future Work e e e e e e 102
4.7.1 Alternative Authentication Models 102
4.7.2 Avallabilityand Security L o e . 104
5 Conclusions 106
5.1 Summary of Contributions 107
A The AMAC Construct 109
Bibliography 112
Vita 128

viii

92

List of Tables

2.1
2.2
2.3

4.1
4.2

Feature comparison of versioning filesystems. 20
Results from the “basic” tests of the Connectathon bmack suite. 35
The total number of allocated inodes and the number @ktlimtodes allocated for
directories for the ext3 and ext3cow file systems over varenapshot frequencies. 42

The trace-driven throughput of no authentication, PM3MdA1, and HMAC-SHA1. 96
The number of seconds required to audit all files and fildstwo or more version
in an entire file system using HMAC-SHAl1 and PMAC-SHAL. 99

List of Figures

2.1
2.2
2.3

2.4
2.5

2.6

2.7

2.8
2.9

3.1

3.2

3.3
3.4

3.5
3.6

4.1

Creating snapshots and accessing data in the pastooext3 21
Creating distinguished (named) snapshots inext3cow. 23
Both on-disk and in-memory inodes were retrofitted tqsupsnapshot and copy-
on-write by adding three fields: an inode epoch number, a-copwrite bitmap,

and field pointing to the next inode in the versionchain. 25
An example of names scoping to inodes overtime. 28
Accessing a path. .B@12/C. . . in ext3cow. Directory entries are shown with birth
and death epochs. Inodes (circles) are show with the epoehiah the inode was
created. Inode numbers are not shown. Black directoryesnémd inodes indicate

the access path according to scoping rules. The inode charaviersed until an
inode with creation epoch prior to the epoch of the parendenis found. Tempo-

ral vnodes, in-memory copies of inodes, make this processrate by preserving
epoch information along access paths., .. 31
An example of copy-on-write. The version from epachpdates logical block

into L}. Ext3cow allocates a new physical (disk) bldekto record the difference.

All other blocksareshared. 32
Results from the “basic” tests in the Connectathon bmiack suite. All data are

shown with 95% confidence intervals. 36
The time to open 150 versions ofafile.. 40
Results from the Bonnie++ file system benchmark e i |

Authenticated encryption and secure deletion for deidgta block in a versioning

file system using the all-or-nothing scheme. 53
Authenticated encryption and secure deletion for demdgta block ina verS|on|ng

file system using the random-key scheme. 56
Metadata architecture to supportstubs. L. 62
The time to securely delete files for the secure ovemngriftraditional), all-or-
nothing, and random-key techniques. 66
Bonnie++ throughput and CPU utilizationresults. 68
Results of trace-driven file system aging experiments.. 71
Updating directory version authenticators whenUiles deleted. 88

4.2
4.3
4.4
4.5
4.6

4.7

Metadata architecture to support version authentgato. 91

Results of micro-benchmarks measuring the CPU and laiskghput. 94
Characterization of write I/Os from trace-driven expents. 98
Aggregate auditing performance results for PMAC-SHAA HMAC-SHAL. . . . 100
Size of authentication data from four months of tracedklwads at three snapshot

INtervals. e on
Alternative models for digital auditing. 103

Xi

Chapter 1

Legislating Storage Systems

“Good laws have their origins in bad morals.”
— Ambrosius Macrobius

he introduction of computers to the workplace has resuttedrecord management paradigm
Tshift. Paper records have made way for their electronic tawparts, allowing information
to be quickly indexed and shared as well as improving acgurdowever, the rapid adoption of
electronic records is not all good news; with new technologyne new threats. Duplicates of
records can be made and transmitted anywhere instantdyabusatening privacy. Electronic data
is also easily malleable, making undetectable forgery alsification a simple task. Legislators and
the courts have begun to recognize the importance of howreféc records need to be maintained
and secured. The result is an ever increasing body of eféctrecord management
Recent federal, state and local legislation have createdreguirements for how to re-
tain and access electronic information. There currentigteover 4,000 acts and regulations that
govern digital storage, all with a varying degree of requieats for maintaining electronic records.

Examples include the Health Insurance Portability and Aotability Act (HIPAA) of 1996, the

Gramm-Leach-Bliley Act (GLBA) of 1999, and the more receatiBral Information Security Man-
agement Act (FISMA) and Sarbanes-Oxley Act (SOX) of 2002.

The legislation does not mandate specific technologies,isniirmade obvious how a
storage system should technically meet all of the requirgsneDespite this confusion, storage
systems vendors have quickly identified the large markebppity and have maodified existing
systems and marketed them as compliance products. In 2@@dargs-Oxley compliance alone
represented a market of over $5 billion [48]. Mostly, veredadd policy enhancements to existing
storage platforms that aid in the maintenance and retepfiafata, such as forbidding data dele-
tion. However, many of these products fail to meet the truaateds legislation places on storage
systems [34, 55, 93]. They have been unable to combine therek@ntion, privacy and authenticity
requirements into a single system. In this dissertationpmsent some completed technical con-
tributions to the field of regulatory compliant storage pars to this goal. We have implemented
these solutions, and made them available for public use.

We begin this chapter by detailing some of the federal lavgs regulations that affect
computer storage system architectures. We distill theslatipn into a set of four technological
requirements. We conclude that compliance requires: omirgy with real-time access to past
versions, secure deletion, digital privacy and digitahauticity. By no means is our analysis of
legislation exhaustive, but it does demonstrate the bineaall spirit of the legislated requirements,

illustrate the similarities between the laws, and motithteneed for better technological solutions.

1.1 Health Insurance Portability and Accountability Act

The Health Insurance Portability and Accountability ActiPAA) [22], enacted in 1996,
was written to develop standards for the normalization difvidual health records and to encourage
the use of electronic records pursuant to these goals. Hifegaires “covered entities,” including
doctors, hospitals, insurance, billing and clearing haasapanies, to adhere to a set of resolutions
designed to standardize electronic health care transmissind protect the privacy and security of
individually identifiable health information. As it relat¢o technology, HIPAA includes provisions
that address the security and privacy of “protected heaftirination” (PHI); specifically, two Ad-
ministrative Simplification provisions, the Privacy Ruledathe Security Rule. Both rules affect the

way electronic records must be accessed, transmitted, andged.

1.1.1 Privacy Rule

The HIPAA Standards for Privacy of Individually Identifiable Healtifdrmation or Pri-
vacy Rule [23], is the first comprehensive set of Federalgot@in standards for the privacy of
personal health information. The Rule addresses the usdiseidsure of individuals’ PHI by cov-
ered entities. The Rule attempts to strike a balance betteehighest protection of privacy for
individuals with the needs for smoothly flowing health car®imation. Additionally, The Rule
attempts to be flexible enough to cover the large variety #&eb of health care providers. The
Rule’s key requirements includiccess controhnderror correctionprocedures, allowing an indi-
vidual to manage how their personal information will be ygadluding limiting the marketing of
their PHI. The Privacy Rule also requires a covered entiyoiument all of its privacy procedures

and designate a privacy officer to implement the procedurddrain staff.

1.1.2 Security Rule

The HIPAA Security rule acts as a complement to the Privadg Raroviding guidance
for interpreting the physical and technical safeguardsiired by the Privacy Rule. The Security
Rule, however, only protects Electronic Protected Healtbrmation (EPHI) and does not cover
paper copies of documents or oral information. The Rule dsfthree segments of security safe-
guards for compliance: administrative, physical, and nexdi. Generally, The Rule requires a
covered entity to ensure thmnfidentiality integrity and availability of all EPHI that is created,
received, maintained or transmitted by a covered entity dititity must protect against reasonable
threats and hazards, as well as protect against any redg@mditipated misuse or unauthorized

disclosure.

1.2 Sarbanes-Oxley Act

The Sarbanes-Oxley Act of 2002 (SOX) [21] is legislationaad in response to the high-
profile Enron and WorldCom financial scandals [65, 67]. lengrscale and sweeping implications
have made it the subject of much independent research [2Z84,35]. In its own words, SOX was
designed to “protect investors by improving the accuraay @aliability of corporate disclosures
made pursuant to the securities laws and for other purgd8€ is administered by the Securities
and Exchange Commission (SEC), charged to publish rulesetndeadlines for compliance. The
Act does little to set business practices, nor does it sp&oiv a business should store its financial
records, leaving many businesses in the dark as to whichdémdies are necessary to become com-
pliant. In this way, SOX affects IT departments as stronglyhe financial side of corporations. All

business records, including electronic records and messawust be retained for “not less than five

years.” The records must be storadthenticallyand be available foreal-time reporting Conse-

guences for non-compliance are steep fines, imprisonmenbtl. This leaves IT departments with
the challenge of creating and implementing controls andquores in a cost-effective fashion that
satisfy the requirements put forth by the legislation. Wenitify those sections of Sarbanes-Oxley

that require a technological solution and particulariyeetffa company’s storage infrastructure.

1.2.1 Section 302

Section 302 centers on the responsibilities of a compangsagement with respect to
the electronic records they keep. CFOs and CEOs must pdsoedify that their financial records
accurately represent the company’s financial conditiondi#ahally, they certify to an audit com-
mittee or independent auditor that they are responsiblthéoproper disclosure controls and proce-
dures, ensuring no deficiencies in control, data manipuiatir acts of fraud are committed in their

financial records.

1.2.2 Section 404

Section 404 mandates an annual evaluation of internal@eritr financial reporting. The
report must address the record management procedureseaaffdttiveness and control structure
of the company’s financial records. In addition, the compsayditor must issue a report that
attests to the effectiveness of the internal controls andgutures. An auditor must be able to verify

the authenticity of the records to pass the auditing process

1.2.3 Section 409

Section 409 addresses real-time reporting on financiakdecorl'he legislation requires
that “[e]ach issuer...shall disclose to the public on adapid current basis such additional in-
formation concerning material changes in the financial dardor operations of the issuer”. The

results must be “in plain English.”

1.2.4 Section 802

Section 802 requires companies to produce and maintaiemtitrand immutable records

for at least five years. The types of records are specifiedd$EC, and include:

records such as workpapers, documents that form the baais afidit or review, mem-
oranda, correspondence, communications, other documants records (including
electronic records) which are created, sent, or receiveddnnection with an audit or
review and contain conclusions, opinions, analysis, orrfaia data relating to such
an audit or review.

A failure to store the required documents or knowingly atigr destroying or falsification of rele-
vant data may result in fines and up to twenty years of impnsant. Section 802 applies to both

public and private companies under certain circumstances.

1.3 Gramm-Leach-Bliley Act

The Gramme-Leach-Bliley Act (GLBA) [24], also known as then&icial Services Mod-
ernization Act, increases competition among banks, séEsiGompanies and insurance companies
by allowing investment and commercial banks to consolidet@ddition, legislators proposed best
practices in consumer privacy, data and information ptmtecand securities regulation, maintain-

ing that the privacy of consumer financial information is gramary concern. Specifically, three

6

sections: the Financial Privacy Rule, the Safeguards Rule,Pretexting Protection. These rules
govern the collection, disclosure, and protection of comsts nonpublic, personal information and

personally identifiable information.

1.3.1 Financial Privacy Rule

This rule requires privacy notices to be issued by a finariesitution when creating a
new consumer relationship and annually thereafter or wherptivacy policy is modified. The
notice must detail what consumer information is collectemly the information is used, with whom
the information is shared, and, most importantly, how tHerimation is being protected. The
notice must also provide an opt-out option for consumers ddnmot wish to share their private

information.

1.3.2 Safeguards Rule

The Safeguards Rule mandates that financial institutionst mevelop a plan that ad-
dresses the security and protection of clients’ privatsqal information, including former clients.
The plan must include a strategy for developing and testieq architecture to secure personal in-

formation, as well as establishing a program to update safelg commensurate with threat levels.

1.3.3 Pretexting Protection

GLBA requires that financial institutions take the necegsgaecautions to protect clients
from pretexting or “social engineering” attacks. Theseetypf attacks include “phishing” or other

identity thefts that involve the fraudulent use of clierfoirmation.

1.4 Federal Information Security Management Act

The E-Government Act was signed into law in December 20082 Witte 111 of the act be-
ing the Federal Information Security Management Act, oNFA925,28]. FISMA is a replacement
of the Government Information Security Reform Act (GISRAsned to broaden and strengthen
computer and network security in both the federal goverriraed its contractors. The goals of
FISMA are to: provide a security control framework for etecic information, provide a set of
minimum controls required for federal data, provide a freumik for improved oversight, and rec-
ognize that specific hardware and software solution dewsshould be left to individual agencies.

Agencies are required to implement yearly risk assessimgsts and evaluations.

1.5 SECRule 17 CFR; 240.17a-4

The Security Exchange Commission (SEC) Rule 17 GRR0.17a-4 makes detailed re-
guirements on electronic record management for brokersrmabers of the exchange [20,56]. The
Rule addresses how and when electronic records should feel sto “electronic storage media.” It
stipulates that the media “[p]reserve the records exaligin a non-rewritable, non-erasable for-
mat” as well as maintaining the records such that they areufately reproduced” and stored in an
“unalterable form.” Further, the storage device must ‘fiijeautomatically the quality and accu-
racy of the storage media recording process.” Section Z4041f)(2)(i))(C) makes a timestamping
and serialization requirement intended to “ensure botlatdoeiracy and accessibility of the records
by indicating the order in which records are stored, therabking specific records easier to locate
and authenticating the storage process.” Records musbal&ept readily available for review at

any time.

1.6 The Court and Electronic Records

The rules of the court have also been updated to accountdarghemeral and evolving
nature of electronic data. Previously, courts requirégdiits to preserve and produce all electronic
records in their “possession, custody, or control” that retevant to the proceedings. However,
a KCI Research report [93] states that because electroierse is becoming a routine aspect
of litigation, courts are developing rules and requireraghat highlight the need for companies
to be vigilant in managing and producing all relevant eviden The courts are uninterested in
storage formats or media technologies. Data must be abtsssuthentic and inexpensive to store
in the context of a lawsuit. Simple backups and businessiragityt plans are not an acceptable
substitute for dedicated archives that meet the systemettation, preservation and accessibility
requirements set forth by recent legislation. In one instarm company was sanctioned by the
court over the reuse of backup tapes containing relevanii emasages, even though the company
“did not do so willfully, maliciously, or in bad faith.” In asther, Author Anderson was cited for
obstruction of justice in the Enron investigation for pgarianaged and unauthentic electronic data

records.

1.7 Distilling the Requirements

All of this legislation makes broad technological requients of storage systems. How-
ever, many share similar goals, allowing a few technolotgiesicompass and satisfy their legislated
mandates. We distill these requirements into four tectgieto versioning with real-time access,

secure deletion, digital privacy and digital authenticity

1.7.1 \Versioning with Real-Time Access

Legislation requires an auditable trail of changes maddectrenic records that are ac-
cessible in real-time. SEC Rule 17 CRER40.17a-4(f)(2)(ii)(C) mandates that a storage system
“serialize” and “time-date” electronic records. Sectidi2&f SOX demands that electronic records
be retained immutably; HIPAA and FISMA have similar immuyatequirements. These require-
ments imply the need for versioning files over time. Eachigarsust be an immutable record of
how that file looked at a given point in time. Every modificatio a file must create a new version
labeled with a time stamp, giving an implicit order to the rficdtions. Versions of a file must be
chained together, providing a complete modification histifrthe life of the file over time. In this
way, the system creates a logical relationship betweendfsons of the file as well as a temporal
relationship between other file versions in the system.

In addition to versioning, the system must provide a meanguafkly retrieving ver-
sions from any point in time. This meets the “real-time astesquirements of SOX Section 409,
SEC Rule 17 CFR240.17a-4(f)(2)(ii)(D) and 17a-4(f)(3)(i), as well as tHePAA Security Rule’s
“availability” requirement. Real-time access means hgwde ability to fetch any version of a file or
directory from any point in time with the same speed as agugske actively running file system.
The file system must present an uniform interface for aceggsast versions as well as providing
a logical view into the past,e. being able to visualize previous system hierarchies. Tlos/a an
auditor, for example, to view past file system states as aayhmather than a disjoint collection of

versions.

10

1.7.2 Secure Deletion

Legislation requires that electronic data records havemadd scope. This includes pro-
tecting former clients’ privacy (GLBA Safeguard Rule), itmg the length of time for which a
company is liable for maintaining accurate financial resgf@OX Section 802), and the right of
a patient to redact portions of their medical records (HIFRA#vacy Rule). Destroying electronic
records is a more challenging problem then destroying papeogues. The physical proprieties of
magnetic storage and the design of most file systems alloavtdaixist even after explicit deletion
commands. Storage systems mustaesgure deletiotechniques to meet compliance requirements.
Secure deletion is the act of permanently removing data faosgstem, either by physically re-
moving the data from the medium, or by making data unreadalIST has published a set of
federal guidelines for securely removing data from obgofetms of storage [103], however, the
recommendations do not address deleting data from a livieommeent,i.e. securely removing data
from the active file system without affecting other data. dlieh must also be fine grained. By
fine grained, we mean the system must be able to securel\edribsets of a file on an active file

system, as in the redaction of a patient’'s medical record.

1.7.3 Digital Privacy

Systems must now provide confidentiality through encrymiedage and data transmis-
sion. By using encryption, systems may meet the accessotoetuirements of the HIPAA Privacy
Rule. Only those users who possess the proper decryptiaifiype able to access data in a mean-
ingful way. Further, an accidental disclosure of encryptath does little to threaten the privacy of

patients. Other legislation, including the HIPAA SecuiRyle and GLBA Privacy Rule, explicitly

11

require the use encryption in data systems for consumer atiehp privacy. FISMA also requires
federal agencies to protect its data from unauthorizedadisce by using encryption commensurate

with the sensitivity of the information.

1.7.4 Digital Authenticity

In addition to encryption, system must also employ autleatitn to meet legislated re-
quirements. Authentication in a storage system providesethkey features: data integrity, user
authenticity, and authentic client-server transactiolbe HIPAA Security Rule, Section 802 of
SOX, and SEC Rule 17 CFER40.17a-4(f)(2)(ii)(B) require a verification of the “acagy” and
“integrity” of electronic data. Additionally, Section 4@f SOX requires that auditors be provided
with proof of the integrity of data. While encryption proeisl privacy from unauthorized intrusion
and disclosure, it alone cannot guarantee the accuracyegrity of the data. Without authentica-
tion, there is no way to verify that the results of a decryptiwe the same as original, unencrypted
data. When combined with a third party, authentication jges a means of committing to a version
of file, with no way to undetectably modify a fileposteriori Section 302 of SOX results in CFOs
and CEOs having a vested interest in the integrity of thearfaial records, as they must “certify”
that their financial reports fairly represent the conditidriheir company. Authentication provides
a way to bind an individual to their data, making the repudiabf data impossible. Lastly, authen-
tication allows a company to prove to a customer that theywdn® they say they are, meeting the

pretexting requirements in the GLBA.

12

1.8 Contributions

In this dissertation we make three contributions to the fldegulatory compliance stor-
age technologies. The first is ext3cow, a platform for coemée with the versioning, audtitability
and real-time disclosure requirements of electronic ikeetention legislation. Ext3cow is a file
system that provides a unique time-shifting interfacemitting a real-time and continuous view
of data in the past. For our second contribution, we add sedeletion to ext3cow, a method of
permanently destroying data stored on magnetic media ng@dtect user privacy and limit a com-
pany’s liability. Our solution is unique to versioning filgsdems, providing finer grained deletion
and orders of magnitude better performance over existiclgniques. Further, our secure deletion
algorithms provide authenticated encryption, a transfibvat keeps data both privaéed authentic.
Lastly, we introduce constructs that create, manage, aify digital audit trails for versioning file
systems. Using our model, auditors may efficiently verifg tontents of a file system, meeting
the authenticity requirements of electronic record legish, such as Sarbanes-Oxley and Gramm-
Leach-Bliley. By using I/O efficient parallel message auti@tion codes, sequences of versions
may be easily authenticated and bound to a file system higrapcoviding a complete authentic

version history of a file system.

13

Chapter 2

Ext3cow: A Time-Shifting File System
for Regulatory Compliance

“Time is an illusion. Lunchtime doubly so.”
—Douglas Adams

ecent legislation makes new requirements of storage sgstéhe ext3cow file system, built
Ron the popular ext3 file system, provides an open-sourcedigianing and snapshot plat-
form for compliance with the versioning and audtitabiligguirements of electronic record retention
legislation. Ext3cow providestane-shiftinginterface that permits a real-time and continuous view
of data in the past. Time-shifting does not pollute the filstegn namespace nor require snapshots
to be mounted as a separate file system. Further, ext3covpisrimented entirely in the file system
space and, therefore, does not modify kernel interfacesange the operation of other file systems.
Ext3cow takes advantage of the fine-grained control of sk-dnd in-memory data available only
to a file system, resulting in minimal degradation of perfante and functionality. Experimental
results confirm this hypothesis; ext3cow performs compggarabext3 on many benchmarks and on

trace-driven experiments.

14

2.1 Introduction

To address the versioning and auditability needs of regdlatorage, we have developed
ext3cow an open-source disk file system based on the third extendesl/fitem (ext3). Ext3 [16]
is the Linux default file system based on the Minix file systdriv]] and influenced by the Fast File
System (FFS) [73]. Ext3 has become robust and reliable,igirmy reasonable performance and
scalability for many users and workloads [15]. Ext3cow egitethe ext3 design by retrofitting the
in-memory and on-disk metadata structures to supportvigigiht, logical file systems snapshots
and individual file versioning. All files and snapshots arailable at all times, and ext3cow offers
a fine-grained user-interface to access individual file arettbry versions from snapshots.

Ext3cow differs from other efforts at versioning file sys&in its combination of fea-
tures. Ext3cow both (1) encapsulates all versioning fenctvithin the on-disk file systems and (2)
provides a fine-grained, interactive, and continuous-timerface to file versions and snapshots.
We accomplish this through theme-shiftinginterface, which allows users and applications to in-
teract directly with the disk file systemg. the interface is transparent to kernel components, in
particular, the virtual file system. Other file systems thawjule fine-grained access to versions do
so by modifying kernel interfaces [26, 80, 101]. This incaopying overheads, pollutes the buffer
pool with old data, and complicates installation and mareage. Other disk file systems provide
coarse-grained access to versions through the creatioaréspace tunnels [52] or via mount-
ing separate logical volumes [111, 112]. Some disk file sgstprovide no interface to versions,
restricting versioning to internal use only [98, 105].

In time-shifting, ext3cow introduces an interface to venang that presents a continuous

view of time. Users or applications specify a file name andgoigt in time, which ext3cow scopes

15

to the appropriate snapshot or file version. The time-sigjfinterface allows user-space tools to
create snapshots and access versions. Applications magsaitese tools to coordinate snapshots
with application state. User-space tools are suitable fitoraation, using software as simple as
cron. Furthermore, snapshots fit well into an information lifeleymanagement (ILM) framework.
ILM is a policy-based scheme for managing the lifetime ot#tenic information, including time-
sensitive data migration and consolidation, backups astbna&ion, disaster recovery, and long-
term archiving. Ext3cow’s time-shifting and controlledsi@ning facilitates the consistent transfer
of data from ext3cow to other storage systems.

Many of the virtues of ext3cow lie in encapsulating snapsimad versioning entirely
within the on-disk file system. Ext3cow does not change angedenterfaces and does not modify
the common file object model provided by the virtual file sys{@/FS) [61]. This makes ext3cow
easy to install in existing systems; it may be loaded as a feadua running kernel and co-exist
with all other Linux file systems. Only an on-disk file systesuch as ext3cow, can control data
placement, metadata organization, and 1/0. Specificaltydcew retains tight control on the ver-
sioning of buffers and pages. Ext3cow does not degrade gamfirmance by insuring the Linux
page cache sees a single copy of file data; old versions ofedatonly on disk. Copies are cre-
ated on-demand when performing 1/O to the disk. This is naisitme in VFS implementations.
Further, ext3cow’s inode versioning policy maintagtable inodespreserving a files inode number
over the lifetime of a file. Because of stable inodes, ext3noplicitly supports the Network File
System (NFS [75,99]). NFS file handles are essential toatslsiss operation and require the inode
numbers to remain the same over the lifetime of a file handigai this is not possible in VFS

implementations.

16

Lastly, some versioning systems require specialized, &ed expensive hardware, mak-
ing these systems unattractive for the consumer. Regulatimpliance places a tremendous fi-
nancial burden on organizations. AMR research estimaegatial spending on Sarbanes-Oxley
compliance alone in 2004 to exceed $5 billion [48]. Experemwith HIPAA [60] indicates that
the costs of compliance are relatively greater for smaligamizations. This research is a key com-
ponent in reducing the cost of compliance for small orgaitina. By providing an open-source
system that satisfies the requirements of many electronardemanagement regulations, ext3cow
will be particularly helpful to non-profits subject to gowenent reporting requirements, small busi-
nesses subject to Sarbanes-Oxley, and small health cafidgn®subject to HIPAA.

We have released ext3cow under the GNU Public Licensédntia//www.ext3cow.com
As of this writing, ext3cow has had over a thousand visitod laundreds of downloads from over
one hundred different countries. We run a development ngglilst to which a number of enthusiasts
have subscribed. The authors have been running ext3coartodsdita on their laptops and personal
workstations since June 2003. We have not experienced ensysash or data loss incident in that
period. Ext3cow has appeal beyond the regulatory enviromifioe which it is designed; it has been
adopted as the storage platform for several research gojec

In the remainder of this chapter, we present the detailsefithe-shifting interface and
describe how file system data structures were retrofittedgpart ext3cow’s feature set in a disk file
system. We present benchmarks and trace-driven expesniettshow that versioning has a minor
effect on the file system performance. On most micro-bencksnaxt3cow meets the performance

of ext3.

17

2.2 Related Work

Storage and file systems use data versioning to enhandailigljavailability, and opera-
tional semantics. Versioning techniques include volunbfde system snapshot as well as per-file
versioning. A snapshot is a read-only, immutable, and Egimage of a collection of data as it
appeared at a single point in time. Point-in-time snapsbibasfile system are useful for consistent
image for backup [19, 42,49, 53] and for archiving and dataimgi [91]. File versioning, creating
new logical versions on every disk write or on every operselsession, is used for tamper-resistant
storage [111, 112] and file-oriented recovery from delefe®, 80, 101]. Both techniques speed
recovery and limit exposure to data losses during file sysédore [52, 105]. A range of snapshot
implementations exist, both at the logical file system |¢48| 53,54, 91, 101] and the disk storage
level [37,51,54,112].

File system versioning and snapshot have been used to reftome failure. FFS [70,
72, 73] takes snapshots to create a quiescent file system igh tehperform on-line file system
integrity checking. Writes that occur during a check areglljto a special snapshot file to which
file system blocks are copy-on-written. FFS does not prosigénterface to access file snapshots
on-line. WAFL [52] also uses shapshots for recovery. In t@aldj it provides users asnapshot
directory for every directory in the file system containirigaete views of the past.

File system snapshots implemented with copy-on-write arénglicit feature of log-
structured file systems. LFS [98, 105] and Spiralog [43, 58hdt overwrite file data as they are
written, but instead write changes as they occur to a cirdoa Checkpoints, which serve as
snapshots in log-structured file systems, are used to asl-la file system to a known consistent

point after a system failure. LFS and Spiralog do not proadénterface to access versions.

18

The Andrew file system [53, 78], the Episode file system [18nF [89, 90], and Snhap-
Mirror [85] use snapshot with copy-on-write techniques asedhod to perform quick, low-band-
width backups in an on-line fashion. Venti [91] uses haskingd copy-on-write to archive blocks
efficiently. A survey and evaluation of snapshot and backgprtiques was performed by Cherve-
naket al.[17] and Azagunyet al.[3].

Cedar [42, 49, 104] is the first example of a file system thahtadais versions of a file
over time. Versions are shared among file system users. E#ehoperation creates a new version
that has a unique name to the file system,/home/user/ext3cow.tex!3 represents the third version.
Each version of a file is autonomous, with no shared data legtwersions; sharing a file requires
transferring all blocks of a file. Similar approaches weredusy VMS [27,69] and TOPS [79].

The Elephant file system [101] is the first file system to ineladrariety of user-specified
retention policies similar to user-space version contools such as RCS [95, 115], PRCS [66]
and CVS [38, 44]. Elephant attempts to make intelligent glens about which versions to keep,
an approach taken by some on-line configuration managemelstltke CPCMS [107]. Elephant
provides an intuitive, date-oriented interface. It is ieypkented as a replacement for the BSD VFS
layer and provides versioning to all on-disk file systemg thgport its interface. Wayback [26]
uses a similar versioning paradigm.

In the Comprehensive Versioning File System (CVFS) [11l])wates to the server, in
a client/server storage system, are versioned, which ggevan audit trail for security breaches.
CVFS exists as a complete system, in which versions are sextdsy mounting a point-in-time

view of the file system over NFS [75, 99].

19

ext3cow | CVFS | Elephant | Wayback | WAFL | LFS

Disk file system ° ° °
Preserves interfaces ° . N/AL °
Files system snapshot ° ° °
File versioning ° ° °

Time-oriented interface °

Preserves FS namespagce e °
Stable inodes for NFS ° . °
Open-source license ° ° °

Table 2.1: Feature comparison of versioning file systems.

To place our contributions in context with respect to resensioning file system research,
Table 2.1 compares the features of ext3cow to CVFS [111pHaet [101], Wayback [26], WAFL
[52], and log-structured file systems (LFS) [98, 105]. Wedriesthis treatment to file systems,
omitting versioning archives [4, 91], because we are coraxkmwith interactive versioning in the
regulatory environment. We also omit VersionFS [80] beeatisompares similarly to Wayback.
This table punctuates our contribution. Ext3cow provides henefits of fine-grained versioning
with interactive, real time access to versions, without imalating kernel interfaces. Table 2.1
also indicates that log-structured file systems providettadctive alternative; ext3cow’s features
could be achieved by adding the time-shifting interfacertd.&S. However, one of our principal
goals in building ext3cow for the regulatory environmentsecure deletion (Chapter 3), which
obviates the use of the log-structured layout. The writecgadf LFS spreads data from a single
file throughout the log. The efficiency of our secure deletiechitecture (Chapter 3 [87, 88] relies
on the file system clustering data and metadata (indireckb)oso that a small amount of secure

overwriting [45] securely deletes a large amount of data.

IWAFL is implemented as a file-system appliance within a ansbperating system.

20

[user@machine] echo "This is the original foo.txt" > foo.txt
[user@machine| snapshot

Snapshot on . 1057845484

[user@machine| echo "This is the new foo.txt." > foo.txt
[user@machine] cat foo@1057845484

This is the original foo.txt.

[user@machine| cat foo

This is the new foo.txt.

Figure 2.1: Creating snapshots and accessing data in thingag3cow.

2.3 Time-shifting

Our goals in creating an interface to data versioning ineloifiering rich semantics, mak-
ing it congruent with operating system kernel interfaces providing access to all versions from
within the file system. Semantically rich means that the wawlhich data are accessed provides
insight into the age of the data. In the time-shifting pnotej date and time information are embed-
ded into the access path. The interface allows a user to &tgliile or directory from any point in
time and to navigate the file system in the past.

Previous interfaces fail to fulfill our requirements for si@ning in the regulatory envi-
ronment. Some require old data to be accessed through atepayunt point [37,111,112], which
prevents browsing in the existing file namespace to locajectdband then shifting those objects
into the past. Others use arbitrary version numbers to acddslata [27,42,49, 69, 79%,g.access
the file four versions back. These interfaces make senseaflyr shapshots, but do not generalize
to file versioning or more frequent snapshots. WAFL [52] usa®espace tunnels from the present
to the past, that accesses the snapshot version of the tdimestory. While this permits browsing
for files in the present and then shifting those files to the, piadoes not handle multiple versions

gracefully.

21

We describe the operation of the time shifting interfacetlgh the example of Figure
2.1. A call to thesnapshot utility causes a snapshot of the file system to be taken anchsethe
snapshot epoch057845484. For epoch numbers, we use the number of seconds since tloh Epo
(00:00:00 UTC, January 1, 1970), which may be acquired tii@ettimeofday. Subsequent
writes to the file cause the current version to be updatedhbutersion of the file at the snapshot is
unchanged. To access the snapshot version, a user or sippliappends th@ symbol to the name
and specifies a timeSnapshot is a user space program and library call that invokes a fitesy
specificioctl, instructing ext3cow to create a snapshot. Usingtl allows snapshot to bypass
the virtual file system and communicate with ext3cow digeatlhich is consistent with our ethic of
making no changes to the kernel.

We designed the time-shifting interface for applicationd anhance its interactive usabil-
ity through shell extensions. The number of seconds sire&goch conforms tgettimeofday
and is the natural way for applications to query, store, arabée time. However, humans prefer
richer time formats, such dg.[[[cc]lyylmm]dd]hh]lmm[.ss] in thedate utility. To enhance us-
ability for humans, we have developed shell extensionsTimee-Traveling File ManagefTTFM),
which supports a variety of time and naming formats to hegysibrowse versions (Section 2.8).

The time-shifting interface meets our requirements. Uaadsapplications specify a day,
hour, and second at which they want a file. The interface doesequire the specified time to be
exactly on a snapshot. Rather, the interface treats timéncmusly. Requesting a file at a time
returns the file contents at the preceding snapshot. Thdaoguses th@ symbol, a legal symbol
for file names, so that the VFS accepts the name and passesuighhto ext3cow unmodified. The

interface adds no new names to the namespace.

22

[user@machine] snapshot /usr/bin

Snapshot on /usr/bin 1057866367

[user@machine| 1n -s /usr/bin@1057866367 /usr/bin.preinstall
[user@machine| /usr/bin.preinstall/gcc

Figure 2.2: Creating distinguished (named) snapshotstBtew.

As an interface, time shifting is useful but not complete. d@enot wish to require users
to remember when they created versions. Thus, we allow tséag or enumerate all versions of a
file, reporting versions and their scope (creation and ogphent time).

Distinguished snapshots may be created using links, whiclstime-shifting to emu-
late the behavior of systems that put snapshots in their @amespaces or mount snapshot names-
paces in separate volumes. For example, an administrati irieate a read-only version of a file
system prior to installing new software (Figure 2.2). Iftaléng software breakgcc, the adminis-
trator can use the olgcc through the mounted snapshot. Beca@se a legal file system symbol,
the link can be placed anywhere in the namespace, even \aitioiher file system. Hard links may
also be used to connect a name directly to an old inode. Thimpbe illustrates that time-shifting is
inherited from the parent directorye. the entire subtree beloyusr/bin.preinstall is scoped
to the snapshot.

The time-shifting interface imposes some restrictionsiréhily, the use of seconds since
the Epoch limits (named) snapshots to one per second. Fmnsythat use snapshot as part of
recovery [52], sub-second granularity may be necessagale ext3cow, like ext3, uses a journal
for file system recovery, we found no emergent need for sabrgbsnapshot. Furthermore, upcom-
ing support for microsecond granularity time in ext3 willreve all limitations on the frequency of

shapshots in ext3cow.

23

2.4 Metadata Design

The metadata design of ext3cow supports the continuousratien of the time-shifting
interface within the framework of the data structures oflthieix VFS. Unlike many other snapshot
file systems [26, 80, 100, 101, 123], ext3cow does not interfe replace the Linux common file
model, therefore, it integrates easily, requiring no clesnip the VFS data structures or interfaces.
Modifications are limited to on-disk metadata and the in-rognfile system specific fields of the
VFS metadata. Ext3cow adds metadata to inodes, directtnig®rand the superblock that allows it

to scope requests from any point-in-time into a specific #esion and support scoping inheritance.

2.4.1 Superblock

Implementing snapshot requires some method of keeping tththe snapshot epoch
of every file in the system. We place a system-wigech counterstored in the on-disk and in-
memory superblock, as a reference for marking versions ¢d.afthe counter is a 32-bit unsigned
integer, representing the number of seconds passed sm&ptith. Using one second granularity,
the 32-bit counter allows us to represent approximatelyyEz2s of snapshots. We choose the same
representation of time as does ext3. When ext3 adopts mimoas granularity times, ext3cow will
be able to represent arbitrarily fine-grained epochs in dipeblock.

To capture a point-in-time image of a file system the supekbépoch number is updated
atomically to the current system time. Creating new file ioms is not done at the time of the
snapshot, but, rather, at the next operation that modifiesiita or metadata of an inodeg.a
write, truncate, or attribute change. Snapshots may bgdarigl internally by the file system or by

anioctl call made through the user-space snapshot utility.

24

i ino 8 - 211 - 78

. [ext3cow!

i _epochnumber | 55 50 43 specific |

i _cowbitmep 0x0 OxA 0x4 :

i nextinode | 211 78 0 i
|

Figure 2.3: Both on-disk and in-memory inodes were retegfitb support snapshot and copy-on-
write by adding three fields: an inode epoch number, a copywttie bitmap, and field pointing to
the next inode in the version chain.

2.4.2 Inodes

Inode versions identify how a file’s data and attributes hehenged between snapshots.
For each system-wide snapshot, a file may have an inode thatilges it in that epoch. A file
that has not changed during an epoch shares an inode withdhieys epoch(s). While space is
very tight in the 128 byte ext3 on-disk inode, we were ablegiwegze in an additional 20 bytes
of information by removing empty fields used for disk sectiigranent, as well as fields for the
HURD operating system, which is not currently supportedufeuversions of ext3 will expand the
inode size to 256 or 512 bytes, eliminating all practicalcgpeonstraints [116].

Three fields were added to both the on-disk and in-memonesepttation of the inode
(Figure 2.3). A 32-biti_epochcounter describes to which epoch an inode belongs. When writ-
ing data to an inode, the system updatesitheochcounter to the system epoch counter. The
i_cowbitmap maintains the block-versioning state of a file and is descrilm detail in Section
2.6.2. Lastly, we have added a pointer to the next versiom @fie@de with thei_nextinode field.

Ext3cow supports both system-wide snapshots and indivitdaasersions, by allowing

a snapshot to be taken on a per-file basis. A variant of thesbioaitility, which takes a name as

25

an argument, sets a file epoch to the current time. An indaligwersioned inode has the property
that itsi_epochcounter exceeds the system-wide epoch. On write, ext3cow detdstsdhdition
and performs copy-on-write based on the file’s epoch rathesn the system epoch. A subsequent

snapshot ends this condition and creates another new cepyrite version of the file.

2.4.3 Directory Entries and Naming

Directories in ext3 and ext3cow are implemented as inodesinh the data blocks con-
tain directory entries. Ext3cow versions directory inodethe same manner as file inodes. The
directory entries are versioned by adding scoping metdddtse directory entrydirent). In ext3,

a directory entry contains an inode number, a record lerggtiame length, and a name. To this,
we add abirth epochand adeath epochthat determine the times during which a name is valid.
Extending the directory entry is trivial and under no spagestraints, because its length already
varies in order to handle names and name deletions. Beca@estody entries are scoped to an

epoch range, names that have been unlinked, and, thergfees, a death epoch, may be reused
in a future context to represent a new file. Ext3cow only @sleine class of files; it permanently

removes files that are unlinked in the same epoch in whichwlezg created.

Retaining file names in ext3cow does not increase the dimestpe when compared with
ext3. Both systems unlink names by increasing the recomtheof the preceding directory entry
to span the deleted entry, an approach taken by similar fitess such as FFS [71]. In ext3cow,
the space for unlinked names are not reused, nor are dietmmpacted. In contrast, FFS reuses
space only after all names in a fixed sized chunk are unlinkéelither approach is particularly
attractive. Like both ext3 and FFS, ext3cow will benefit frafficient directory indexing data

structures, which is a planned improvement [116].

26

2.5 \ersion Scoping

Ext3cow maps point-in-time requests to snapshots and tob@sions through scoping
metadata in directory entries and names. The logicallyicoats (to the second) time-shifting
interface does not match exactly the realities of versipnirSeveral system properties govern
ext3cow’s versioning model. First, a version of file metadat data covers a period of time; gener-
ally many different snapshot epochs. Also, ext3cow retdata at the time of a snapshot and does
not track intermediate changes. When updating data or metaeixt3cow marks versions with the
current system epoch, not the current time. Finally, extBataps point-in-time requests to the
version preceding the exact time of the request. All toli theans that when accessing data in the
past, all modifications that occur during an epoch are isiilé and occur at the start of an epoch.

A notable boundary case arises in the snapshot number eetbsnthesnapshot utility
(Section 2.3). Intuitively, the snapshot number providesas to the file system at the time at which
the snapshot was takeBnapshot returns the current time and sets the system epoch courtés to
value plus one. The return value, spyprovides a handle to all changes included in the previous
epoch. The system sets the counter for the current epog¢h-tb. The next snapshot taken lat
covers the periodj + 1,k]. Access to any time in this interval, includitg retrieves data marked
with epochj + 1.

Scoping backward in time provides a natural interface fer ¥iérsioning and recovery.
For example, a user accidentally deletes a file at somettim&, but remembers the file exists at
some timese [j + 1,k]. To restore the file, the user specifin the time-shifting interfacefile@s.
The enumeration of versions aids this process; users speiais-in-time at which the file changed

using thels file@ command and can identify the desired file version.

27

Directory <A 17> <B,17> <A,17> <B,17> <A,17> <B,86>

Entries ly 2,9 ly 2% l (5,%) (2,8)
chame 176 250) 17— 866) > 25() 17— 866) > 25

(a) (b) (©)
System Epoch = 8

Figure 2.4: An example of names scoping to inodes over time.

2.5.1 Scoping Inodes

Inode chains provide a continuous-time view of all versiohs file. The chain links
inodes backward in time. To find an inode for a particular épest3cow traverses the inode chain
until it locates an inode with an epoch less than or equal ¢oréiguested point-in-time. At the
head of the chain sits the most recent version of the inodé ddsign minimizes access latency
to the current version — the most common operation. Figutéa® shows inodel7 last written
during epocts. Subsequent to that write, a snapshot has been taken,tedliogp the system epoch
counter value 08. A modification to inodel7 (Figure 2.4(b)) results in the inode being duplicated.
Ext3cow allocates new inod& to which it copies the contents of inod&. Inodes86 is assigned
epoché and marked as unchangeable. Inadds brought to the current epoch and remains a live,

writable inode.

2.5.2 Scoping Directory Entries

Directory entries are long lived, with a single name spagmrany different versions of
a file, each represented by a single inode. Figure 2.4 shoestaliy entries as a name, inode pair
with the birth and death epoch as subscripts. The inode figilttgpto the most recent inode to

which the name applies. For example, nanpmints to inodel 7 at the head of the inode chain. The

28

name first occurred during epoch 5 and is currently live,es@nted by. An * leaves live names
open-ended so that as time progresses and the inode epoebsies, the directory entry remains
valid. When removing a name, ext3cow updates the death epoictilicate the point-in-time at
which the name was removed. In Figure 2.4(c), nantes and the death epoch is seBtoThe
names is no longer visible in the present and will not be visible &mry point-in-time request that
scopes to snapshot epagh

The flexibility of birth/death epoch scoping respects theasation between names and
inodes in UNIX-like file systems. Many names may link to a &rigode. Also, a different number
of names may link to an inode during different epochs. Theesaame may appear multiple times
in the same directory, linking to different inodes duringwraverlapping birth/death periods.

One concern with our scoping data structures is the lineawtyr of the inode chains
over time. For frequently written files, each snapshot regmes a new link in the chain and, thus,
accesses to versions in the distant past may be prohipitivgdensive. While file systems have a
history of linear search structures.g.directories in ext3, we find the situation unacceptable and
amend it.

Ext3cow restricts version chains to a constant length tjinchirth/death directory entry
scoping. When the length of a version chain meets a threstahlg, ext3cow terminates that chain
by setting the death epoch of the directory entry used tosacttés chain to the current system
epoch and creates a new chain (of length one) by creating lecaigpdirectory entry with a birth
epoch equal to the system epoch. The stability of inodesresshiat other directory entries linking
to the same data find the new chain. Data blocks may be shatwddieinodes in the two chains.

A long-lived, frequently-updated file is described by mahgrs chains rather than a single long

29

chain. While directory entries are also linear-searchctiines, this scheme increases search by a
constant factor. It will improve the performance of versagarch from Qn) to O(1) when ext3

adopts extensible hashing for directories.

2.5.3 Temporal Vnodes

The piece-wise traversal of file system paths makes it difftounherit time scope along
pathnames. For paths of the form. /B@time/C. . ., time-shifting specifies th&, and its succes-
sors, are accessedtaitme. When accessing, the file system provides onB’ s inode as context.
Becausetime rarely matches the epoch numberBéxactly, B's inode frequently has an epoch
number prior totime. In this case, the exact scope is lost. For example, Fig@@pillustrates
the wrong version of being accessed. The access &hould resolve to the inode at epath but
leads mistakenly to the inode at epach

To address this problem, ext3cow gives to each time conkattdccesses an inode a
private in-memory inode (vhode) scoped exactly to the remaetime. We call this é&emporal
vnodefor two reasons: it is temporary and it implements time segphheritance. To make a
temporal vnode, ext3cow creates an in-memory copy of thelerto which the request scopes
and sets the epoch number of the vnode to the requested tiratsolchanges the inode number
to disambiguate the temporal vnode from the active vhodecdiner temporal vnodes. To avoid
conflicts, the modified inode number lies outside of the ramigmodes used by the file system.
The temporal vnode correctly scopes accesses to directtrig® (Figure 2.5(b)). This creates
potentially many in-memory copies of the same inode dat@aBse data in the past are read-only,
the copies do not present a consistency problem. The teinpade exists until the VFS evicts it

from cache. Subsequent accesses to the same magrge(l2) locates its temporal vnode in cache.

30

...,B(4,*),... B @)
temporal copy

-7 T
N

)
| —

Directory ...,C (7 14y,--- - C 7,14y
entries
temporal copy
LT T T
Inode chain @ (1\) .’\(12)‘-
(a) Incorrect scoping. (b) Correct scoping with temporal vnodes.
Figure 2.5: Accessing a path .B@12/C. .. in ext3cow. Directory entries are shown with birth

and death epochs. Inodes (circles) are show with the epoehith the inode was created. Inode
numbers are not shown. Black directory entries and inoddisate the access path according to
scoping rules. The inode chain is traversed until an inodh areation epoch prior to the epoch
of the parent inode is found. Temporal vnodes, in-memoryiesopf inodes, make this process
accurate by preserving epoch information along access path

Temporal vnodes are unchangeable and cannot be marked dirty
Live inodes operate normally; concurrent or subsequerdsaes in the present share a

single copy of the vnode with the original inode number, esponding to the inode on disk.

2.6 \Versioning with Copy-on-Write

Ext3cow uses disk-orientedcopy-on-write scheme that supports file versioning without
polluting Linux's page cache. Copies of data blocks exidy @m disk and not in memory. This
differs from other forms of copy-on-write used in operatisgptems that create two in-memory
copies, such as process forkingf érk [71]) and the virtual memory management of shared pages.
Ext3cow has the same memory footprint for data blocks as axi® thus, does not incur overheads
for copying pages or by using more memory, which reducegsystiche performance.

Ext3cow employs the copy-on-write of file system blocks tplement multiple versions

31

v

ey
il
T
U
o
o
L

-
Physical Disk Blocks

.NewaAIIocated Free [Used

Figure 2.6: An example of copy-on-write. The version frono@p2 updates logical block; into
L7. Ext3cow allocates a new physical (disk) bldekto record the difference. All other blocks are
shared.

of data compactly. Scoping rules allow a single version ofeatfi span many epochs. Therefore,
ext3cow needs to create a new physical version of a file onlgnwdiata changes. Frequently,
physical versions have much data in common. Copy-on-wiibgva versions to share a single copy
of file system blocks for common data and have their own coflarfks of data that have changed
(Figure 2.6).

When the most recent version of a file precedes the systenmhépdine, any change
to that file creates a new physical version. The first step dufgicate the inode, as discussed in
Section 2.5. The duplicated inodes (new and old) initiahgre all data blocks in common. This
includes sharing all indirect blocks, also doubly and yripidirect blocks. The first time that a
logical block in the new file is updated, ext3cow allocatesew physical disk block to hold the
data, preserving a copy of the old block for the old versiambsequent updates to the same data in
the same epoch are written in place; copy-on-write occunsagt once per epoch. Updates to data

in indirect blocks (resp. doubly and triply indirect blogkshange not only data blocks, but also

32

indirect blocks. Ext3cow allocates a new disk block as a empyvrite version of an indirect block.

2.6.1 Memory Management

We isolate the copy-on-write function to the on-disk fileteys; we do not trespass into
kernel components such as the VFS or page cache. To achisvisdlation, ext3cow leverages
Linux's multiple interfaces into memory; memory pages thald file data are comprised of file
system buffers, which map in-memory blocks to disk blockst3Eow performs copy-on-write by
re-allocating the file-system blocks that represent theagtofor a buffer. In Linux, the VFS passes
awrite system call to the on-disk file system prior to updating a gagaemory. This allows a
file system to map the file offset to a memory address and btg idto the cache from disk as
needed. In ext3cow, we take this opportunity to determiadile block needs to be copy-on-written
and to allocate a new backing block when necessary. Ext3eplages the disk block that backs
(provides storage for) an existing block in the buffer andkadhe buffer dirty. Then, therite
call proceeds using the same memory page. At some point fiutine, the buffer manager writes
the dirtied blocks to disk as part of cache management. Thmlacopy is created at this time.
Through re-allocation, ext3cow creates on-disk copiedarfiis without copying data in memory.

The copy-on-write design preserves system cache perfagnand minimizes the I/O
overheads associated with managing multiple versions3demt consumes no additional memory
and does not pollute the page cache with additional data.itiaddlly, for data blocks, copy-on-
write incurs no additional 1/0, because the dirtied buffers updated by therite call and need
to be written back to disk anyway. The only deleterious eftécopy-on-write is I/O for indirect

blocks, which do not necessarily get updated as partwafiae in ext3.

33

2.6.2 Copy-on-write State bitmaps

Ext3cow embeds bitmaps in its inodes and indirect blockssalhaw the system to record
which blocks have had a copy-on-write performed. In the éoekt3cow uses one bit for each
direct block, one for the indirect, doubly-indirect, anibly-indirect block respectively. A bit of
value 0 indicates that a new block needs to be allocated onetkiewrite and bit value 1 indicates
that a new allocation of this block has been performed wittencurrent epoch and that data may be
updated in place. Ext3cow zeroes the entire bitmap whenddtiplg an inode. In an indirect block
(resp. doubly or triply indirect block), the last eight 3R-tvords of the block contain a bitmap
with a bit for every block referenced in that indirect bloglhich are also zeroed when creating a
copy-on-write version of the indirect block. The bitmap idesallows the bitmaps to be updated
lazily — only when data are written, not on snapshot.

Because bitmaps borrow space in indirect blocks, the desidnces the maximum file
size. However, the loss is less than 10%. Ext3cow repredi@ssup to 15,314,756 blocks in
comparison to 16,843,020 blocks in ext3. While larger th#k¥tes, Linux supports 64-bit file
offsets. The upcoming adoption of quadruply indirect blgkl6] will remove practical file size
limitations.

The bitmap design allows ext3cow to improve performancentthéncating a file. Trun-
cate is a frequent file system operation: applications ditemcate a file to zero length as a first
step when rewriting that file. On truncate, ext3 deallocatEblocks of a file. In contrast, ext3cow
deallocates only those blocks that have been written indheiat epoch. Other blocks remain allo-
cated to be used in older versions of the file. Therefore,cext3kips deallocation for any blocks

for which the corresponding state bitmap equals zero. Fitirdat blocks (resp. doubly or triply

34

Operational Test| ext3 | ext3cow |

Test 1: Creates | 501.90 ms| 469.94 ms
Test 2. Removes| 6.23 ms 6.49 ms
Test 3: Lookups | 0.96ms | 0.96 ms
Test 4: Attributes| 6.87 ms 7.19ms
Test 5a: Writes 79.91 ms | 80.65 ms
Test 5b: Reads 15.14 ms| 15.10 ms
Test 6: Readdirs | 19.72ms | 23.12 ms
Test 7: Renames| 4.68 ms 9.22 ms
Test 8: Readlink | 7.68ms | 12.46 ms
Test 9: Statfs 22.86 ms | 22.76 ms

Table 2.2: Results from the “basic” tests of the Connectattenchmark suite.

indirect blocks), ext3cow skips deallocation for the enfiubtree underneath that block correspond-
ing to the zero bit. In this way, ext3cow minimizes I/O to deehte blocks and update free-space

bitmaps during truncate.

2.7 Performance Evaluation

In order to quantify the cost/benefit trade-offs of versngpiwe administered a variety
of experiments comparing ext3cow to its sister file systermmadified ext3. Experiments were
conducted on an IBM x330 series server, running RedHat Lih@xwith the 2.4.19 SMP kernel.
The machine is outfitted with dual 1.3 GHz Pentium Il proocess1.25 GB of RAM, and an IBM
Ultra2 18.2G, 10K RPM SCSiI drive. Experiments for both egt8@nd ext3 were performed on

the same 5.8 GB patrtition.

35

600000

Oext3

500000 1 Eext3cow

400000 -

300000 -

200000 -

Time (microseconds)

100000 -

0+ ‘
df@“é ’ \éﬁﬁ < Q.@iﬁy‘* @&&@y s

(a) Time by benchmark

2.5
wn
§ Oext3
:7 2 Eext3cow
=
5]
wn
§ 1.5
=
%]
£ 17
=
S
= 0.5 7
g
S
z
O .

Q@@ S \sp*é? Ysé;o"@% $§J% ‘2@&%@7&& Qg,&&iy_y =4

Q_@&
(b) Time normalized to ext3

Figure 2.7: Results from the “basic” tests in the Connectatbenchmark suite. All data are shown
with 95% confidence intervals.

36

2.7.1 Micro-benchmarks

The Connectathon NFS test suite evaluates operationaatoass and measures perfor-
mance. There are nine parts to the “basic” series of testsh Rart tests a separate system call.
In order, they are: (1) create 155 files 62 directories 5 tedelep, (2) remove these files, (3) 150
getcwd calls, (4) 1000 chmods and stats, (5) write a 1048§#b6flbe 10 times and read it 10 times,
(6) create and read 200 files in a directory ustegddir, (7) create ten files, rename and stat both
the new and old names, (8) create and read 10 symlinks, astly, [®) perform 1500 statfs calls.

The results of the Connectathon basic test average thasasfuRO runs on a newly
mounted (cold cache) file system. Ext3cow meets the perfocmaf ext3 in most areas. Table
2.2 shows the average cumulative time to perform each tesprésent the same data as bar graphs
in both absolute time values (Figure 2.7(a)) and time ndmedlto the performance of ext3 (Figure
2.7(b)). Graphs include 95% confidence intervals.

Ext3cow and ext3 perform equally on tests that read inoddsdata. Examples include
tests 3 (Lookups), 5b (Reads), and 9 (Statfs). On these tkstBle systems execute the same code
paths and manipulate the same data structures.

Ext3cow also matches the performance of ext3 when writirdy deallocating inodes.
Tests 1 (Creates), 2 (Removes), and Test 4 (Attributes) sltivalence. The Attributes and Re-
moves tests navigate a name tree, operating on files radmeirtbdes directly. The small difference
in performance comes from overhead on naming operationscr€ate, names do not need to be
parsed for time scoping.

Benchmark results indicate that ext3cow and ext3 are cambp@when writing data (Test

5a, Writes). In practice, we expect ext3cow to incur a miremglty on writes. Ext3cow needs to

37

check the copy-on-write bitmap to determine whether a blsloduld be copied the first time a
block is written. Subsequent writes to that (dirty) blockrd need to check again. The benchmark
truncates and rewrites the file anew on each trial, and, fdreredoes not exercise this feature.

String operations to support versioning result in ext3codar-performing ext3 on tests
dominated by name operations. During lookup, ext3cow gaegery name looking for theversion
specifier. Ext3cow takes the string prior@as a file name and uses the remainder of the string for
scoping. It performs similar string parsing when readinmiglic links. Tests 7 (Renames) and
8 (Readlinks) show string manipulation overhead. Test 2kups) does not have this overhead,
because it does not call the on-disk file system lookup. Ratbst 3 calls the VFS entry point
getcwd, which can be satisfied out of the VFS’s directory entry cache

Test 6 (Readdirs) shows the overhead of scoping names ictaies. The system does
not parse strings or interpret thesymbol during this test. Directory names are read and retLin
the calling function without interpretation. The overheamnes from directory entry scoping only.
Ext3cow examines the birth and death epoch of every recatdttteads. This overhead is modest
in the benchmark, but might be larger in practice when ext3ceeds to consider more names in a
directory — those from previous epochs as well as currentreplo total, micro-benchmark results
indicate that ext3cow performs comparably to ext3 on datkimode operations and slightly worse

on name operations.

38

Performance in the Past

To capture the effect of multiple versions on performanoemedified the Connectathon
benchmark to measure the time to open a series of 150 versianfile from youngest to oldest.
These versioned inodes were created consecutively anefdahe, ext3cow lays them out near-
contiguously in block groups. Figure 2.8(a) shows the texflthis test on a cold cache. To access
the first inode, the system incurs two disk seek penaltie¥@rone to lookup the inode by name
and one to access the inode. Almost all subsequent inodesascare served out of different caches.
Figure 2.8(b) shows a closeup of Figure 2.8(a) with largaefiltered out. The baseline represents
fetches out of the file-system cache, with linear scalingabee accessing thé& version traverses
k inodes in cache. Every 32 inodes, the file system fetches ayrmyp (4KB) of inodes from disk,
which, based on the low-latency, seem to be served out ofith&s @dache. Having fetched the next
group of inodes, subsequent accesses to these inodes\a isethe file system cache.

We attempted many “worst-case” versions of this experinbgnartificially aging a file
system. In one experiment, we create a block group worthaefés ¢-16,000) between successive
inodes in a chain. The goal was to subvert and render inaféeext3'’s inode clustering. The results
of all experiments were indistinguishable from the origiegperiment, showing an initial penalty
for I/O and subsequent access out of caches. Our many at¢ofgtame” ext3cow were rendered
ineffective by the combination of placement policies, redead, and disk (track) caching.

We also conducted experiments that flush the cache betweessas to thi" andk+ 1t"
versions. In this experiment, each inode in the chain takpsoximately 14 ms to access, because

I/O dominates in-memory operations. Performance groveslily in the number of versions.

39

Time in Mircoseconds

Time in Microseconds

16000

14000

12000

10000

8000

6000

4000

2000

T
[_Time to open

20 40 60 80

Version Number
(a) Opening Past Inodes

100 120

140

250

200

150

100

50 |

T
[Time to open

[

W W-

20 40 60 80
Version Numbers

100 120

(b) Opening Past Inodes (Enlarged)

Figure 2.8: The time to open 150 versions of a file.

40

140

60000

Oext3
50000 Oext3cow
g 40000
2. 30000
=)
-
2
= 20000
10000
0
Write Write Rewrite Read Read
(char) (block) (char) (block)

Figure 2.9: Results from the Bonnie++ file system benchmark.

2.7.2 Bonnie++

Bonnie++ is a popular performance benchmark that quanfifiesaspects of file system
performance based on observed I/O bottlenecks in a Unigebfile system. Bonnie performs a
series of test on files of a known size. In our experiments, i@ gigabyte files. This insures
I/O requests are not served out of a disk cache, requirifgatisess. For each test, the benchmark
reports throughput, measured in kilobytes processed pende The first test measures the rate of
sequential character output, while the second test measageiential block output. The files, in the
third test, are then sequentially read and rewritten. yaiststs four and five measure the sequential
input, by character and by block.

The results of an ext3 and ext3cow Bonnie++ comparison asepted in Figure 2.9.
Ext3cow performs comparably with ext3 in all but the rewstgeriment. This slight degradation

is due to the copy-on-write bitmap operations that must blopaed when rewriting a buffer.

41

| File System | Allocated Blocks | Allocated Inodes | Dir Inodes |
ext3 1684696 1243263 15318
ext3cow — none 1684696 1243263 15318

ext3cow — 24 hour

1748126 (+3.8%)

1253642 (+0.1%)

33447 (+218%)

ext3cow — 1 hour

1850189 (+9.8%)

1289513 (+3.7%)

35440 (+231%)

ext3cow — 1 min

2144663 (+27.3%

1370547 (+10.2%

64458 (+421%)

Table 2.3: The total number of allocated inodes and the nuwfit@ose inodes allocated for direc-
tories for the ext3 and ext3cow file systems over various smatfrequencies.

2.7.3 Trace-driven Experiments

To examine the effect of snapshots on metadata allocatiemised four months of Berke-
ley system call traces [97] to populate a file system and paed an off-line analysis, identifying
the type and amount of allocation. By aging a file system, weeraocurately measure and analyze
real-world performance [109]. The traces were played baotugh two file systems: ext3, as a
baseline for comparison, and ext3cow. In ext3cow, we usexttholicies to quantify the allocation
difference for various snapshot frequencies. Snapshats taken at 24 hour, 1 hour and 1 minute
intervals. The traces contain no file names or directoryahnetty, but do record file creations and
directory traversals. For our experiments, we use theseatpes to infer a directory hierarchy
and create file names. Our experiment maintains a consisignping of the files we create to the
file and device identifiers in the trace. This ensures thatatipms to the same file in the trace are
performed to the same file in our experiment.

Table 2.3 displays a 0.1% increase in metadata for 24 hopshnés and a 10.2% increase
for 1 minute snapshots. These results indicate a smaldligitmp in the amount of metadata to
support any amount of versioning, followed by gradual groa$ snapshot frequencies increase.
These results are consistent with those presented in CVIHS [Of the 10.2% increase in metadata,

4.7% comes from versioned directory inodes.

42

Results show the storage cost of indefinite versioning touse gmall for snapshot in-
tervals of an hour or more. Shorter snapshots (1 minute)usedarger overheads, although the
storage requirements only increase by 27% over four mohtiesexpect the overhead rate of 27%
to be stable over time. The majority of this overhead comas frecent files (older than 1 minute
and younger than 1 hour) and, thus, updates to old data doalat op a large portion. Similarly,
updates from files older than a day make up only 3.8% of th&2@f. Inode overheads are smaller
than block overheads. Directory inode overheads are maiagy ranging to 421%. However, per-
centage overhead is not the right measure here. The totdlerushdirectory inodes is small when
compared with all allocated inodes; they make up only 4.7%lIafllocated inodes in the one hour
shapshot trial and fewer that 3% in all others experimeritsisTthey have a small overall effect on

the system.

2.8 Availability

Ext3cow is stable and ready for use under the GNU Public lsieerit is available for
download ahttp://www.ext3cow.conT he site, to date, has received thousands of visitors and hu
dreds of downloads. Beyond its use as an effective file sy$terend users, ext3cow is being
employed as the platform for additional systems researtte Zap project [83] is using ext3cow
as the foundation for a virtualization layer that providesups of processes a consistent view of a
system. Ext3cow is also the basis of on-going research oagdimg of versioning file systems at
U.C. Santa Cruz and practical time-shifting features at. B&keley. A number of free-lance pro-
grammers have asked for support in building network stodmyéces based on ext3cow. The Time

Traveling File Manager (TTFM) [92] is a graphical user ifidee created for ext3cow that provides

43

an intuitive interface for easily navigating a time-simifile system. TTFM'’s features include a
date slider, allowing an easy navigation into views of thstpa tool for version comparison, and

the ability to launch a shell in a past file system context.

44

Chapter 3

Secure Deletion for a Federally
Compliant Storage System

“Three may keep a secret, if two of them are dead.”
— Benjamin Franklin

U nder Section 802 of the Sarbanes-Oxley Act, provisions@HHPAA Privacy Rule, and the
GLBA Safeguard Rule, data should have limited lifetime boifithe liability of a company
and to protect the privacy of clients and patients. In thiaptér, we present algorithms and an
architecture for the secure deletion of individual versiafi a file. The principal application of
this technology are versioning file systems used for fejecalmpliant storage; it is designed to
eliminate data after a mandatory retention period and tteptahe privacy of financial or medical
records. However, it applies to any storage system thateshdata between files. We compare
two methods for secure deletion that use a combination dfemticated encryption and secure
overwriting. We also discuss implementation issues, satheademands that secure deletion places
on version creation and the composition of file system mésadaur results show that new secure

deletion techniques perform orders of magnitude better phavious methods.

45

3.1 Introduction

Versioning storage systems are increasingly importargsearch and commercial appli-
cations. However, existing versioning storage systemsdanle fine-grained, secure deletion as an
essential requirement. Secure deletion is the act of remgalipital information from a storage sys-
tem so that it can never be recovered. Fine-grained refeesioving individual files or versions of
a file, while preserving all other data in the system.

Secure deletion is valuable to security conscious useroagahizations. It protects the
privacy of user data and prevents the discovery of inforomatin retired or sold computers. Tra-
ditional data deletion, or “emptying the trash”, simplydgeblocks for allocation at a later time;
the data persists, fully readable and intact. Even when atataverwritten, information may be
reconstructed using expensive forensic techniques, suofagnetic force microscopy [125].

We are particularly interested in using secure deletiorindt liability in the regulatory
environment. By securely deleting data after they haveffiatiut of regulatory scope,.g. seven
years for corporate records in Sarbanes-Oxley, data camoécovered even if disk drives are
produced and encryption keys revealed. Data are gone foaegecorporations are not subject to
exposure via subpoena or malicious attack.

Currently, there are no efficient methods for fine-grainezlise deletion in storage sys-
tems that share data among files, such as versioning filensy$26,52,80,86,101,111] and content-
indexing systems [4, 81, 91].

The preferred and accepted methods for secure deletiomitlata sharing systems in-
clude: repeatedly overwriting data, such that the origotatlh may not be recovered [45]; and,

encrypting a file with a key and securely disposing of the kemake the data unrecoverable [13].

46

Block sharing hinders key management in encrypting systeatsuse key disposal. If a
system were to use an encryption key per version, the keylemilbe discarded, as it is needed to
decrypt shared blocks in future versions that share the/pteat data. To realize fine-grained secure
deletion by key disposal, a system must keep a key for evamedtblock, resulting in an onerous
number of unmanageable keys. Fewer keys allow for more flegicurity policies [59].

Secure overwriting also has performance concerns in vergjesystems. In order to limit
storage overhead, versioning systems often share blocllatafbetween file versions. Securely
overwriting a shared block in a past version could eraselibfsubsequent versions. To address this,
a system would need to detect data sharing dependenciegatherrsions before committing to
a deletion. Also, in order for secure overwriting to be effiti the data to be removed should be
contiguous on disk. Non-contiguous data blocks requireyns@eks by the disk head — the most
costly disk drive operation. By their very nature, versiansystems are unable to keep the blocks
of a file contiguous in all versions.

Our contributions include two methods for the secure datetif individual versions that
minimize the amount of secure overwriting while providingtteenticated encryption. Our tech-
nigues combine disk encryption with secure overwriting tsat &a large amount of file data (any
block size) are deleted by overwriting a smstlibof 128 bits. We collect and store stubs contigu-
ously in a file system block so that overwriting a 4K block aftst deletes the corresponding 1MB
of file data, even when file data are non-contiguous. Unlilkaygriion keys, stubs are not secret
and may be stored on disk. Our methods do not complicate keyagesment. We also present a
method for securely deleting data out-of-band, a consthattlends itself to multiple parties with

a shared interest in a single piece of data and to off-sitk-bps.

a7

To our knowledge, ext3cow is the first file system to adopteniibated encryption (AE),
which provides both privacy and authenticity. Authenyidg essential to ensure that the data have
not changed between being written to disk and read backic®arty in environments where stor-
age is virtualized or distributed and, thus, difficult to ploally secure. Authenticated encryption
requires message expansion — ciphertext are larger thaplaimeext — which is an obstacle to its
adoption. Encrypting file systems have traditionally uskxtl ciphers, which preserve message
size, to meet the alignment and capacity constraints of dlistes [10, 59, 122]. In practice, addi-
tional storage must be found for the expanded bits of the agesOur architecture creates a parallel
structure to the inode block map for the storage of expandsabthe ciphertext and leverages this
structure to achieve secure deletion. Message expansiondamental to our deletion model.

Secure deletion and authenticated encryption has beernnepited in the ext3cow ver-
sioning file system, designed for version management inggelatory environment [86]. Experi-
mental results show that our methods for secure deletiomovepdeletion performance by several
orders of magnitude. Also, they show that metadata maintenand cryptography degrade file

system performance minimally.

3.2 Related Work

Secure Deletion

Garfinkel and Shelat [41] survey methods to destroy digitahd They identify secure
deletion as a serious and pressing problem in a society #ised high turn-over in technology. They
cite an increase in lawsuits and news reports on unautlibdiselosures, which they attribute to a

poor understanding of data longevity and a lack of securetidal tools. They identify two methods

48

of secure deletion that leave disk drives in a usable cardisecure overwriting and encryption.

In secure overwriting, new data are written over old datehab the old data are irrecov-
erable. Gutmann [45] gives a technique that takes 35 synohiopasses over the data in order to
degauss the magnetic media, making the data safe from niafpree microscopy. (Fewer passes
may be adequate [41]). This technique has been implememiggki-space tools and in a Linux file
system [5]. Secure overwriting has also been applied indh@astically-smart disk system [108].

For file systems that encrypt data on disk, data may be sgalekdted by “forgetting” the
corresponding encryption key [13]; without a key, data mewem be decrypted and read again. This
method works in systems that maintain an encryption key peafid do not share data between
multiple files. The actual disposal of the encryption key rimaplve secure overwriting.

There are many user-space tools for secure deletion, sudlpaseraser, andbootandnuke.
These tools provide some protection when securely deldtta However, they may leak informa-
tion because they are unable to delete metadata. They nalgalsdata when the system truncates
files. Further, they are difficult to use synchronously beeahey cannot be interposed between file
operations.

The importance of deleting data has been addressed in gtstenscomponents. A con-
cept related to stub deletion has been used in memory sy$8&hsvhich erase a large segment
of memory by destroying a small non-volatile segment. Saguteallocating memory limits the
exposure of sensitive data [18]. Similar problems have taitessed by Gutmann [46, 47] and

Viega [117].

49

Secure Systems

CFS [10] was an early effort that added encryption to a fildesgs In this user-space
tool, local and remote (via NFS) encrypted directories amessed via a separate mount point. All
file data and metadata in that directory are encrypted usimg-aefined user key and encryption
algorithm. CFS does not provide authenticated encryption.

NCryptfs [122] is a cryptographic file system implemented atackable layer in FiST [124].
The system is designed to be customizable and flexible faisiss by providing many options for
encryption algorithms and key requirements. It does notigeoauthenticated encryption.

Cryptoloop uses the Linux cryptographic API [77] and theplback interface to provide
encryption for blocks as they are passed through to the Widlkile easy to administer for a single-
user machine, cryptographic loopback devices do not scelleevmulti-user systems.

Our implementation of encryption follows the design of they@oGraphic Disk Driver
(CGD) [36]. CGD replaces the native disk device driver wittedhat encrypts blocks as they are
transfered to disk.

The encryption and storage of keys in the random-key eniorygtheme resembles lock-
boxes in the Plutus file system [59] in which individual fileykeare stored in lock-boxes and sealed
with a user’s key.

Cryptography

Secure deletion builds upon cryptographic constructswesadapt to meet the demands
of a versioning file system. The principal methods that weleynare the all-or-nothing transform
[94], secret-sharing [106], and authenticated encrypf8n Descriptions of their operation and

application appear in the appropriate technical sections.

50

3.3 Secure Deletion with Versions

We have a developed an approach to secure deletion for mgrgigystems that mini-
mizes the amount of secure overwriting, eliminates the feedata block contiguity, and does not
increase the complexity of key management.

Secure deletion with versions builds upon authenticatedygetion of data on disk. We
use a keyed transform:

fk(Bi,N) — Ci||S

that takes a data blociBy), a key k) and a nonceN) and creates an output that can be partitioned
into an encrypted data block;), where|B;| = |C;|, and a shorstub(s), whose length is a parameter
of the scheme’s security. When the kdy (emains private, the transform acts as an authenticated
encryption algorithm. To securely delete an entire bloaity the stub needs to be securely over-
written. This holdseven if the adversary is later given the key (khich models the situation in
which a key is exposeab.g. by subpoena. The stub reveals nothing about the key or tiae alad,
thus, stubs may be stored on the same disk. It may be possitdedver securely deleted data after
the key has been exposed by a brute-force search for the Kmsever, this is no easier than a
brute-force search for a secret key and is considered tatyac

A distinct advantage of our file system architecture is the efsauthenticated encryp-
tion [8]. Authenticated encryption is a transform by whictalare kept both privatnd authentic.
Many popular encryption algorithms, such as AES, by themeselprovide only privacy; they can-
not guarantee that the decrypted plaintext is the same asithieal plaintext. When decrypting, an
authenticated encryption scheme will take a ciphertextratutn either the plaintext or an indica-

tion the ciphertext is invalid or unauthentic. A common tagae for authenticated encryption is to

51

combine a message authentication code (MAC) with a startdlaok cipher [8]. However, single
pass methods exist [96].

Authenticated encryption is a feature not provided by eptimg file systems to date.
This is because authenticated encryption algorithms ekplata when encrypting; the resulting
cipherblock is larger than the original plaintext. This sasia mismatch in the block and page size.
File systems present a page of plaintext to the memory systdrich fills completely a number
of sectors on the underlying disk. The AE encrypted ciphértelarger than and does not align
with the underlying sectors. (Other solutions based on a¥istem or disk redesign are possible).
Expansion results in a loss of transparency for the enaymystem. We address the problem of
data expansion and leverage the expansion to achieve skiation.

Our architecture for secure deletion with stubs does notplicate key management.
It employs the same key-management framework used by dishAgting file systems based on
block ciphers, such as Plutus [59] and NCryptfs [122]. Itraegts these to support authenticated
encryption and secure deletion.

We present and compare two implementations of the keyedftnan (fy): one inspired
by the all-or-nothing transform and the other based on nanizled keys. Both algorithms allow for
the efficient secure deletion of a single version. We alsegireextensions, based on secret-sharing,

that allow for the out-of-band deletion of data by multipkerjpes.

3.3.1 AON Secure Deletion

The all-or-nothing (AON) transform is a cryptographic ftioa that, given a partial out-
put, reveals nothing about its input. No single message gftedext can be decrypted in isolation

without decrypting the entire ciphertext. The transformuiees no additional keys. The original

52

Input: Data Blockds,...,dn, Block ID id, Counterx,
Encryption keyK, MAC key M

1: ctry «— id ||x]|1]|0t28IX-fid[-1

2:C1,...,Cm— AES-CTR{"(dy,. .., dm)

3:t — HMAC-SHA-1y(cq,...,Cm)

4: ctry — id||x| 0|08~ X~ lid|-1

5:X1, ..., Xm — AES-CTR"2(cy,...,Cm)

6: X0 —X1B...DXnPt

Output: Stubxg, Ciphertexixs, ..., Xn

(a) AON encryption

Input: Stub xg, Ciphertextx,...,xm, Block ID id,
Counterx, Encryption keyK, MAC key M

1: ctrp «— id||x||0] |02 Ix~fid[-1

2.t —Xo®D...DBXm

3:C1,...,Cm— AES-CTR™2(xq,...,Xm)
4:t" — HMAC-SHA-1y(ca,...,Cm)
5:ift’ #treturnL

6: ctry « id||x||1]|0t28 M -lidl-1
7:dy,...,dm— AES-CTRI"(cy, .. .,Cm)
Output: Data Blockdy,...,dn

(b) AON decryption

Figure 3.1: Authenticated encryption and secure deletiom kingle data block in a versioning file
system using the all-or-nothing scheme.

intention, as proposed by Rivest [94], was to prevent bfortee key search attacks by requiring the
attacker to decrypt an entire message for each key guessplyinf the work by a factor of the
number of blocks in the message. Boyko presented a formalitiefi for the AON transform [14]
and showed that it meets the OAEP [8] scheme used in manyétitprotocol standards. AON has
been proposed to make efficient smart-card transactiond2157], message authentication [35],
and threshold-type cryptosystems using symmetric primst{2].

The AON transform is the most natural construct for the seclaletion of versions. We
aim to minimize the amount of secure overwriting. We also @imot complicate key management.
AON fulfills both requirements while conforming to our dédet model. The all-or-nothing property

of the transform allows the system to overwrite any smalkstibf a data block to delete the entire

53

block; without all subsets, the block cannot be read. Whemkioed with authenticated encryption,
the AON transform creates a message expansion that is bouhd same all-or-nothing property.
This expansion is the stub and can be securely overwrittsedorely delete a block. Because the
AON transform requires no additional keys, key managentembimore complicated than a system
that uses a block cipher.

We present our AON algorithm for secure deletion in Figure 3'he encryption algo-
rithm (Figure 3.1(a)) takes as inputs: a single file systeta bimck segmented into 128-bit plaintext
messagesd(, ...,dn), a unique identifier for the blockd), a unique global countek), an encryp-
tion key (K) and a MAC key). To encrypt, the algorithm first generates a unique enmnypt
counter €trp) by concatenating the block identifieid) with the global counterx) and padding
with zeros (Step 1). This counter is used as an initialiratiector to the block cipher to prevent
similar data blocks from encrypting to the same cipher blddke same counter and key combina-
tion should not be used more than once, so we use the block&galh disk address fdd and the
time in which it was written foix; both characteristics exist within an inode. An AES endoypt
of the data is performed in counter mode (AES-CTR) using glsifile key) and the counter
generated in Step kif;). This results in encrypted datey(...,cyn). The encrypted data are au-
thenticated (Step 3) using SHA-1 and MAC keéy)(as a keyed-hash for message authentication
codes (HMAC). The authenticator) (s then used as the key to re-encrypt the data (Step 5). Itis
this step that makes the authentication and encryptiomgyranon-separable. A second counter
(ctrp) is used to prevent repetitive encryption. A stup) (s generated (Step 6) by XOR-ing all the
ciphertext message blocks, (..., Xn) with the authenticatort). The resulting stub is not secret,

rather, it is an expansion of the encrypted data and is sutgietbe all-or-nothing property. The

54

ciphertext &1, ..., Xn) is written to disk as data, and the stug)(is stored as metadata.

Decryption (Figure 3.1(b)) works similarly, but in revers@he algorithm is given as
inputs: the stubxp), the AON encrypted data blocky(,. .., xm), the same block IDid) and counter
(X) as in the encryption, and the same encryptikh énd MAC (M) keys used to encrypt. The
unique counterdtr,) is reconstructed (Step 1), the authenticatdrig reconstructed (Step 2) and
then used in the first round of decrypting the data (Step 3)HMAC is performed on the resulting
ciphertext (Step 4) and the resutf)(is compared with the reconstructed authenticatp(Step 5).

If the authenticators do not match, the data are not the samien they were written. Lastly, the
data are decrypted (Step 7), resulting in the original pdain

Despite the virtues of providing authenticated encryptidth low performance and stor-
age overheads, AON encryption suffers from a guessedteiaiattack. After an encryption key
has been revealed, if an attacker can guess the exact cofenblock of data, she can verify that
the data were once in the file system. This attack does noalreverypted data. Once the key
is disclosed, the attacker has all of the inputs to the etiony@lgorithm and may reproduce the
ciphertext. The ciphertext may be compared to the undeldtazk of data, minus the deleted stub,
to prove the existence of the data.

Such an attack is reasonable within the threat model of adguyl storage; a key may be
subpoenaed in order to show that the file system containaiifispgata at some time. For example,
to show that an individual had read and subsequently madmpts to destroy an incriminating

email.

55

Input: Data Blockds,...,dn, Block ID id, Counterx,

Encryption keyK, MAC key M

2: nonce— id||x

3:Cy,...,Cn— AERO"qdy, ..., dm)

4: ctr — id||x||028~ X~ lid]

5:¢cg + AES-CTRY"(K)

6:t — HMAC-SHA-1y(ctr,co)

Output: Stubcy,t,cmi1,...,Cn, Ciphertextc,...,cn
(@) Random-key encryption

Input: Stub co,t,Cni1,..-,Cm, Ciphertext cy, ..., Cp,
Block ID id, Counterx, Encryption keyK, MAC key M
1: ctr — id||x||0228- X~

2:t' «— HMAC-SHA-1y(ctr,co,r)

3:ift/ #treturnL

4:k — AES-CTR{" (co)

5: nonce— id||x

6:dy,...,dn = AER°"qC1,...,Cm)

Output: Data Blockdy,...,d,

(b) Random-key decryption

Figure 3.2: Authenticated encryption and secure deletioa single data block in a versioning file
system using the random-key scheme.

3.3.2 Secure Deletion Based on Randomized Keys

As mentioned by Rivest [94], avoiding such a text-guessttack requires that an AON
transform employ randomization so that the encryption @seds not repeatable given the same
inputs. The subsequent security construct generates arrekely on a per-block basis.

Random-key encryption is not an all-or-nothing transfoinstead, it is a refinement of
the Boneh key disposal technique [13]. Each data block isypted using a randomly generated
key. When this randomly generated key is encrypted with teekéy, it acts as a stub. Like AON
encryption, random-key encryption makes use of authdeticancryption, minimizes the amount
of data needed to be securely overwritten, and does notreetig management of additional keys.

We give an algorithm for random-key secure deletion in FégBu2. To encrypt (Figure

3.2(a)), the scheme generates a random ke{Step 1) that is used to authenticate and encrypt

56

a data block. Similar to the unique counters in the AON schemenique nonce is generated
(Step 2) to seed randomness when encrypting. Data is theypted and authenticated (Step 3),
resulting in an expanded message. The algorithm is builh @y authenticated encryption (AE)
scheme; AES and SHA-1 satisfy standard security definitioftsavoid the complexities of key
distribution, we employ a single encryptiokiand MAC M) key per file (the same keys as used in
AON encryption) and use these keys to encrypt and authémtiba random keykj (Step 5). The
encrypted randomly-generated key)(serves as the stub. The expansion created by the AE scheme
in Step 3 €m.1,...,Cn), and the authentication of the encrypted random Kegldes not need to be
securely overwritten to permanently destroy data.

An advantage of random-key encryption over AON encrypt®itsi speed. For example,
when the underlying AE is OCB [96], only one pass over the dgataade and it is fully paralleliz-
able. However, the algorithm suffers from a larger messagaresion: 384 bits per disk block are
required instead of 128 required for the AON scheme. We goearg other more space-efficient
algorithms. We have developed another algorithm that reguio more bits than the underlying AE
scheme. Unfortunately, this is based on OAEP and a Luby-&thcknstruction [64] and is only
useful for demonstrating that space efficient construstidm exist. It is far too slow to be used in

practice, requiring six expensive passes over the data.

3.3.3 Other Secure Deletion Models

Our secure deletion architecture was optimized for the mastmon deletion operation:
deleting a single version. However, there are different efmfbr removing data that may be more
efficient in certain circumstances. These include effityar@moving a block or all blocks from an

entire version chain and securely deleting data shared Htyptelby parties.

57

Deleting a Version Chain

When a user wishes to delete an entire version chanall blocks associated with all
versions of a file, it may be more efficient to securely oveteviine blocks themselves rather than
each version’s stubs. This is because overwriting is slod/ raany blocks are shared between
versions. For example, to delete a large log file to which tasonly been appended, securely
deleting all the blocks in the most recent version will delell past versions.

AON encryption allows for the deletion of a block of data fr@am entire version chain.
Due to the all-or-nothing properties of the transform, teeuse overwriting of any 128 bits of a
block results in the secure deletion of that block, even é&f $kub persists. Ext3cow provides a
separate interface for securely deleting data blocks fibgeesions. If a deleted block was shared,
it is no longer accessible to other versions, despite thass@ssion of the stub.

Randomized-key encryption does not hold this advantadg setective components may
be deletedj.e. @. Thus, in order to delete a block from all versions, the systeust securely
overwrite all stub occurrences in a version chain, as ogptissecurely overwriting only 128 bits
of a data block in an AON scheme. To remedy this, a key shareti(®e3.3.3) could be stored
alongside the encrypted data block. When the key share isedg@verwritten, the encrypted data
are no longer accessible in any version. However, thisegiyais not practical in most file systems,
owing to block size and alignment constraints. Storagetfeikkey share must be provided and there
is no space in the file system block. The shares could be stdsedlhere, as we have with deletion

stubs, but need to be maintained on a per-file, rather thangusion, basis.

58

Secure Deletion with Secret-Sharing

The same data are often stored in more than one place. Anusbeiample of this are
remote back-ups. It is desirable that when data fall out gfilsgory scope, all copies of data are
destroyed. Secret-sharing provides a solution.

Our random-key encryption scheme allows for the separatidghe randomly-generated
encryption key inta key shares. This is a form of gn,n) secret-sharing scheme [106]. In secret-
sharing, Shamir shows how to divide data imt@hares, such that arkyshares can reconstruct
the data, but wherk — 1 shares reveals nothing about the data. We are able to cenapsisgle
randomly generate encryption kdy) from multiple key shares. An individual key share may then
be given to a user with an interest in the data, distributimgy mheans to delete data. If a single
key share is independently deleted, the correspondingadlataecurely deleted and the remaining
key shares are useless. Without all key shares, the randgengrated encryption key may not be
reconstructed and decryption will fail.

Any number of randomly generated keys may be created in S{gjglire 3.2(a)) and

composed to create a single encryption Kdy To create two key shares, Step 1 is replaced with:

K—?¢dr

The stub €p) then becomes the encryption of any one key share, for exampl

co — AES-CTRY'(¢)

With an (n,n) key share scheme, any single share may be destroyed to Igedeiete the corre-

59

sponding data. The caveat being that all key shares musekergrat the time of decryption. This

benefits parties who have a shared interest in the same dataxd&mple, a patient may hold a key
share for their medical records on a smartcard, enabling tbhecontrol access to their records and
also independently destroy their records without accetisetgtorage system.

This feature extends to the management of securely delgtitegfrom back-ups systems.

Data stored at an off-site location may be deleted out-ofiday overwriting the appropriate key

shares. In comparison, without secret-sharing, all copfegata would need to be collected and
deleted to ensure eradication. Once data are copied oueddetbure deletion environment, no

assurance as to the destruction of the data may be made.

3.3.4 Security Properties

It is commonplace for systems based on “novel” securityqumais to be broken. For ex-
ample, the 802.11 WEP has been shown to be completely iresatter being deployed to millions
of users [113]. Ad hocsecurity designs often fail careful analysis. A better apph is to build
systems using proven security constructs and protocolgveRrconstructs have been reduced to
primitives that are believed to be secure because they leaez heen broken under intense scrutiny
(such as AES) or new protocols that have been reduced to keeeure protocols.

AON and random-key secure deletion were designed using molyably secure con-
structs and protocols and, therefore, are as secure asdiegying primitives. Provably secure is
sometimes more expensive in performance and storage etehg. the size of the stubs. This is

often the trade-off for proven security.

60

3.4 Architecture

We have implemented secure deletion in ext3cow [86], an-gpeince, block-versioning
file system designed to meet the requirements of electren@rd management legislation. Ext3cow
supports file system snapshot, per-file versioning, and e-$inifting interface that provides real-
time access to past versions. Versions of a file are implezddny chaining inodes together where

each inode represents a version of a file.

3.4.1 Metadata for Secure Deletion

Metadata in ext3cow have been retrofitted to support vergioand secure deletion. For
versioning, ext3cow employs a copy-on-write policy whelitiwg data. Instead of overwriting old
data with new data, ext3cow allocates a new disk block in wtaonrite the new data. A new inode
is created to record the modification and is chained to theique inode. Each inode represents a
single version and, as a chain, symbolizes the entire velsgtory of a file. To support versioning,
ext3cow “steals” address blocks from an inode’s indireotks$ to embed bitmaps used to manage
copy-on-written blocks. In a 4K indirect block (respechiyedoubly or triply indirect blocks), the
last thirty-two 32-bit words of the block contain a bitmapthva bit for every block referenced in
that indirect block.

A similar “block stealing” design was chosen for managingbst A number of block
addresses in the inode and the indirect blocks have beemvedde point to blocks of stubs. Figure
3.3 illustrates the metadata architecture. The numberme€dblocks in an inode has been reduced
by one, from twelve to eleven, for storage of stulbisdéta[11]) that correspond to the direct

blocks. Ext3cow reserves words in indirect blocks to be @segdointers to blocks of stubs.

61

_dat a[10]
_data[11]
_data[12]
_data[13]
_dat a[14]

Indirect Block

Data Pointers

COW Bitmaps

Stubs

Figure 3.3: Metadata architecture to support stubs.

62

The number of stub block pointers depends on the file systeoklslize and the encryp-
tion method. In AON encryption, four stub blocks are reqdite hold the stubs corresponding to
the 4MB of data described by a 4K indirect block. Because efitessage expansion and authen-
tication components of the randomized-key scheme(...,cn,t), sixteen stub blocks must be
reserved; four for the deletable stubs and twelve for thaesion and authentication. Only the stub
blocks must be securely overwritten in order to permaneaidlgte data.

All stub blocks in an indirect block are allocated with straontiguity. This has two
benefits: when securely deleting a file, contiguous stulkislatay be securely overwritten together,
improving the time to overwrite. Second, stub blocks may loeeneasily read when performing an
I/0O. Stub blocks should not increase the number of I/Os perdéd by the drive for a read. Ext3cow
makes efforts to co-locate data, metadata and stub blocksiigle disk drive track, enabling all to
be read in single /0.

Because the extra metadata borrows space from indiredtdyltiee design reduces the
maximum file size. The loss is about 16%. With a 4K block siz¢3@w represents files up to
9.03x 10 blocks in comparison to0.07 x 10° blocks in ext3. The upcoming adoption of quadruply

indirect blocks by ext3 [116] will remove practical file silzmitations.

3.4.2 The Secure Block Device Driver

All encryption functionality is contained in a secure blatdvice driver. By encapsulating
encryption in a single device driver, algorithms are modatad independent of the file system or
other system components. This enables any file system thpbds the management of stubs to

utilize our device driver.

63

When encrypting, a data page is passed to the device driver.diliver copies the page
into its private memory space, ensuring the user’s imaghaeftata is not encrypted. The driver
encrypts the private data page, generates a stub, and plasserrypted page to the low level disk
driver. The secure device driver interacts with the filesystwice: once to acquire encryption and
authentication keys and once to write back the generatéd stu

Cryptography in the device driver was built upon the prestg cryptographic APl avail-
able in the Linux kernel [77], namely the AES and SHA-1 altjoris. Building upon existing
constructs simplified development, and aids correctnessthét, it allows for the security algo-
rithms to evolve, giving opportunity for the secure deletitansforms to be updated as more secure
algorithms become available. For instance, the entropytbh-% has been recently called into

guestion [119].

3.4.3 Security Policies

When building an encrypting, versioning file system, carfalicies must be observed to
ensure correctness. In our security model, a stub may neves-tyritten in place once committed
to disk.Violating this policy places new stub data over dishsdata, allowing the old stub to be
recoverable via magnetic force microscopy or other foetesthniques.

With secure deletion, 1/0O drives the creation of versionsr &chitecture mandates a new
version whenever a block and a stub are written to disk. @oatis versioninge.g. CVFS [111],
meets this requirement, because it creates a new versioveopwerite () system call. However,
for many users, continuous versioning may incur undegrstarage overheads, approximately 27%
[86,111]. Most systems create versions less frequentlya Amtter of policye.g. daily, on every

file open,etc; or, explicitly through a snapshot interface.

64

The demands of secure deletion may be met without continuersoning. Ext3cow
reduces the creation of versions based on the observatibmtlitiple writes to the same stub may
be aggregated in memory prior to reaching disk. We are dpiwajowrite-back caching policies
that delay writes to stub blocks and aggregate multipleewitio the same stub or writes to multiple
stubs within the same disk sector. Stub blocks may be deleyex when the corresponding data
blocks are written to disk; data may be re-written withoutuséty exposure. A small amount of
non-volatile, erasable memory or an erasable journal weldelpful in delaying disk writes when

the system call specifies a synchronous write.

3.5 Experimental Results

We measure the impact that AON and random-key secure deletiee on performance
in a versioning file system. We begin by measuring the peroce benefits of deletion achieved
by AON and random-key secure deletion. We then use the Bésrienchmark suite to stress
the file system under different cryptographic configuraiohastly, we explore the reasons why
secure deletion is a difficult problem for versioning file teyss through trace-driven file system
aging experiments. All experiments were performed on aid@, 2.8GHz machine with 1GB of

RAM. Bonnie++ was run a 80GB patrtition of a Seagate Barra@&ida80011A disk drive.

3.5.1 Time to Delete

To examine the performance benefits of our secure deletabmitgues, we compared our
all-or-nothing and random-key algorithms with Gutmanresittional secure overwriting technique.

Files, sized 2blocks forn=0,1,..., 20, were created; for 4KB blocks, this a file size range of 4KB

65

350000

Traéitional —
Random-key ---x---
All-or-nothing ---*---
300000 A
250000
0
[$]
[}
£
c 200000
[J]
3 /
a
° 150000
(]
£
'_
100000
50000 /
O —_— == B I Fetritrirdtwtriet ”"iﬁff?i’,ff,f:fff:‘jfﬁ
2e+07 3e+07 4e+07 5e+07 6e+07 7e+07
. File Size (in bytes)
(a) Time to Delete (linear)
1le+06 T T T r
Traditional —+——
Random-key ---x---
All-or-nothing ---*--- /
100000 /
A /
(9]
g2 10000
é / X
o
: / X
5
X7 k3
2 1000 - o
£ / X ¥
// /,x// *
100 e - T
I e S SRR ®
/—x%’/
10

10000 100000 1e+06 le+07 le+08

File Size (in bytes)
(b) Time to Delete (log-log)

Figure 3.4: The time to securely delete files for the secuesveniting (traditional), all-or-nothing,
and random-key techniques.

66

to 4GB. Each file was then securely deleted using each of the #ecure deletion methods, and the
time to do so was measured. Because no versioning is takaug pliles are relatively contiguous
on disk. Further, no blocks are shared between versions blmeks of the file are overwritten.
Figure 3.4(a) demonstrates the dramatic savings in time#rabe achieved by using stub
deletion. Files betweent2and 2° were truncated for clarity. AON deletion bests traditiodele-
tion by a factor of 200 for 67MB files £ blocks), with random-key deletion performing slightly
worse than AON. Differences are better seen in Figure 3.4(lmg-log plot of the same result.
AON and random-key deletion perform similarly on files alited only with direct blocks
(between 2 and approximately ?blocks), and begin to diverge at Blocks. By the time files are
allocated using doubly indirect blocks (betweérand 2° blocks) the performance of random-key
and AON differ substantially. This is due to the larger stide s1eeded for random-key deletion,

requiring more secure overwriting of stub blocks.

3.5.2 Bonnie++

Bonnie++ is a well-known performance benchmark that qgfiestifive aspects of file
system performance based on observed /O bottlenecks in lxXbhised file system. Bonnie++
performs 1/O on large files (for our experiment, two 1-GB fjlés ensure I/O requests are not
served out of the disk’s cache. For each test, Bonnie++ teplamoughput, measured in kilobytes
per second, and CPU utilization, as a percentage of CPU uBageoperations are tested: (1) each
file is written sequentially by character, (2) each file isttgn sequentially by block, (3) the files are
sequentially read and rewritten, (4) the files are read sg@lly by character, and (5) the files are
read sequentially by block. We compare the results of fivesfiltem modes: ext3cow, ext3cow-

null, ext3cow-aes, ext3cow-aon and ext3cow-rk. Respegtithey are: a plain installation of

67

Throughput (Kb/s)

CPU Usage (%)

50,000 T T T T T
W ext3cow _
45,000 [l ext3cow-null
[ext3cow-aes
40,000 " [ext3cow-aon T
[] ext3cow-rk
35,000 -
30,000 - - - - -
25,000 - - -
20,000 - - - -
15,000 - -~ -
10,0001 - - - - ‘g -
5,000 --- -
0 . , :
WriteChar WriteBlock Rewrite ReadChar ReadBlock
(a) Throughput
90% T T T T T
B ext3cow
80% [~ W ext3cow-nall =~ S .
B ext3cow-aes
70% [- - - [ext3cow—aon: - - - - -
[] ext3cow-rk
(4101}
50% - S
40% -0 | | |-
30%—-----pme | | |
20% - - | |
10%—-----
0%

WriteChar WriteBlock Rewrite ReadChar ReadBlock
(b) CPU Utilization

Figure 3.5: Bonnie++ throughput and CPU utilization result

68

ext3cow with no secure device driver. Ext3cow with a secenga driver that does no encryption.
Ext3cow with a secure device driver that does a simple AESyetion. Ext3cow with a secure
device driver that runs the all-or-nothing algorithm, amtBeow with a secure device driver that
runs the random-key algorithm. Ext3cow performs comparabith ext3 [86]. Results are the
product of an average of 10 runs of Bonnie++ on the same ipattit

Figure 3.5(a) presents throughput results for each Bonrrtiest. When writing, through-
put suffers very little in the presence of cryptography. Tdrgest difference occurs when writing
data a block at a time; AON encryption reduces throughput.ByMB/s, from 12.1 MB/s to 10.8
MB/s. This result is consistent with the literature [121]. ndore significant penalty is incurred
when reading. However, we believe this to be an artifact efdtiver and not the cryptography, as
the null driver (the secure device driver employing no cogoaphy) experiences the same perfor-
mance deficit. The problem stems from the secure devicertrivability to aggregate local block
requests into a single large request. We are currently imgiding a request clustering algorithm
that will eliminate the disparity. In the meantime, the éi#nces in the results for the null device
driver and device drivers that employ cryptography are mi@omaximum difference of 200 K/s
for character reading and 1.2 MB/s for block reading. Furttine reading of stubs has no effect on
the ultimate throughput. We attribute this to ext3cow’digbto co-locate stubs with the data they
represent. Because it is based on ext3 [16], ext3cow emplogk grouping to keep metadata and
data near each other on disk. Thus, track caching on diskestiahead in ext3cow put stubs into
the disk and system cache, making them readily availablenaheessing the corresponding data.

To gauge the impact of file system cryptography on the CPU, wasured the CPU uti-

lization for each Bonnie++ test. Results are presentedgargi3.5(b). When writing, cryptography,

69

as a percentage of the total CPU, has nearly no effect. Thiesnsense, as more of the CPU is
utilized by the operating system for writing than for reagliMVrites may perform multiple memory
copies, allocate memory pages, and update metadata. ®ymideding data character by character
is also CPU intensive, due to buffer copying and other memuapagement operations, so cryp-
tography has a negligible effect. Cryptography does havetiaeable effect when reading data a
block at a time, evident in the rewrite and block read experita. Because blocks match the page
size in ext3cow, little time must be spent by the CPU to mamagmory. Thus, a larger portion of
CPU cycles are spent on decryption. However, during deicnypthe system remains I/O bound,
as the CPU never reaches capacity. These results are eonsidth recent findings [121] that the
overheads of cryptography are acceptable in modern filesst
The cost of cryptography for secure deletion does not ogw#ie penalties for falling

out of regulatory compliance. In the face of liability fordg scale identity theft, the high cost of lit-
igation, and potentially ruinous regulatory penaltiegptngraphy should be considered a relatively

low cost and necessary component of regulatory storageragst

3.5.3 Trace-Driven Experiments

We present results that quantify the difficulty of achievgngpd performance when se-
curely deleting data that have fallen out of regulatory scaffe replayed four months of file system
call traces [97] on an 80G ext3cow partition, taking snapsievery second. This results in 4.2
gigabytes of data in 81,674 files.

We first examine the amount of external fragmentation thatlte from versioning. Ex-
ternal fragmentation is the phenomenon of file blocks in d@went disk addresses. This causes

multiple disk drive seeks to read or delete a file. Ext3covsseopy-on-write scheme to version

70

100000

8000

7000

6000

5000

4000

File Size (in 4K blocks)
71

3000
(b) Amount of Data to Delete

2000

1000

10000

Figure 3.6: Results of trace-driven file system aging expenis.

o
o
o
o
— B
l ——
[%) | —
@Q
o c W
S g =
0+]
— o X]
mWEL 1
i ———
X5
L -
S £9
e Jd S8 [—
\r\w\rwr\rvx\wv — Ny E'
I S 3 n O 1
< 3 @ a
\\\\\ N o T]
eI ST =T
R E T———
iz z =
\\\x\\uv 3
T ©T ="
KU
S - — NN
| 27 3
| -~ |
o o E=h : W
£E , ,
c Cc , ,
.© .9
[
[CN] T
> > |
m e
il =
— 1
o =] S -
o o - o o o o o
o — o [¢6) © < N
= -

SJUBIXT X00|g JO JaquINN (azis o)l J0 abejusoiad e se) uons|ad ered Jo Junowy

files [86]. This precludes the file system from keeping allckkof a version strictly contiguous.
Because seeks are an expensive operations, fragmentatetrimental to the performance of tra-
ditional secure overwriting. Figure 3.6(a) shows the éffersioning has on block fragmentation.
Versioning increases dramatically the average number afkbextents — regions of contiguous
blocks. This is in comparison to the ext3 file system withoaitsioning. Note the log-log scale.
Some files have as many as 1000 block extents. This is the: oé$ilgs receiving lots copy-on-write

versioning.

In practice, secure deletion provides more benefit thanab@rchmark results would
indicate (Section 3.5.1). Given that seeking is the mostesgpe disk operation, traditional se-
cure overwriting scales with the number of block extents teeed to be overwritten. For AON or
random-key secure deletion, the number of extents depeamgsupon the file size, not the frag-
mentation of data. Deletion performance does not degratieweisioning. For secure overwriting
of the file data, performance scales with the number of blogtkrnds. Given the large degree of
fragmentation generated through versioning, isolatirigtaa performance from file contiguity is
essential.

Despite the high degree of copy-on-write and fragmentatiace results show that there
are considerable data to delete in each versiengeletion is non-trivial. When a version of a file
falls out of scope, much of its data are unique to that veraimh thus, need to be securely deleted.
This is illustrated in Figure 3.6(b). This graph shows therage amount of data that needs to be
deleted as a percentage of the file size. There are very festliize have fewer than 25% unique
blocks. Most versions need 100% of their blocks deleted.s Thinot unexpected as many files

are written once and never modified. This is much more impoft larger files which are more

72

sensitive to deletion performance; stub deletion offess leenefit when deleting very small files.

Even the largest files in the file system contain mostly unitpia.

3.6 Applicability to Other Data Systems

There is potential for the reuse of the AON and random-kegrétlyms for secure deletion
in any storage system that shares data among files. Contdxing systems, such as Venti [91],
LBFS [81], and pStore [4], have the same deletion problendsoain technology translates directly.
Content-indexing stores a corpus of data blocks (for ak¥iend represents a file as an assemblage
of blocks in the corpus. Files that share blocks in the cotmusge the same dependencies as do

copy-on-write versions.

73

Chapter 4

Verfiable Audit Trials for a
Federally Compliant Storage System

“History is the version of past events that people have @ettd agree upon.”
— Napoleon Bonaparte

his chapter presents constructs that create, manage, afydigital audit trails for version-
Ting file systems. Based upon a small amount of data publishadhird party, a file system
commits to a version history. At a later date, an auditor tisepublished data to verify the contents
of the file system at any point in time. Audit trails create aalag of the paper audit process for file
data, helping to meet the requirements of electronic relegiidlation, such as Sarbanes-Oxley. The
techniques address the 1/0 and computational efficiencgiéiating and verifying audit trails, the
aggregation of audit information in directory hierarchieglependence to file system architectures

and the construction of verifiable audit trails in the preseof lost data.

4.1 Introduction

The advent of Sarbanes-Oxley (SOX) [21] has irrevocablyngkd the audit process.
SOX mandates the retention of corporate records and addrimation. It also requires processes

and systems for the verification of the same. Essentialljeihands that auditors and companies

74

present proof of compliance. SOX also specifies that awgldoe responsible for accuracy of the
information on which they report. Auditors are taking measuo ensure the veracity of the content
of their audit. For example, KPMG employs forensic spesialio investigate the management of
information by their clients.

Both auditors and companies require strong audit trailslectr®nic records; for both
parties to prove compliance and for auditors to ensure tbaracy of the information on which
they report. The provisions of SOX apply equally to digitgdtems as they do to paper records. By
a “strong” audit trail, we mean a verifiable, persistent rdaaf how and when data have changed.

Current systems for compliance with electronic recordsslation meet the record reten-
tion and metadata requirements for audit trails, but cabeatised for verification. Technologies
such as continuous versioning file systems [111] and terhpatabases may be employed in or-
der to construct and query a data history; all changes toatateecorded and the system provides
access to the record through time-oriented file systemfates [86] or through a temporal query
language [110]. However, for verification, past versionglafa must be immutable. While such
systems may prevent writes to past versions by policy, léstanay be changed undetectably (see
Section 4.3).

The digital audit parallels paper audits in process andniiaes. The digital audit is
a formal assessment of an organization’s compliance wilslegtion. Specifically, verifying that
companies retain data for a mandated period. The audit ggsatees not ensure the accuracy or
authenticity of the data itself, nor does it prevent the mesion of data. It verifies that data have
been retained, have not been modified, and are accessilhlim Wit file system. To fail a digital

audit does not prove wrongdoing. Despite its limitatiof& audit process has proven itself in the

75

paper world and offers the same benefits for electronic dscofhe penalties for failing an audit
include fines, imprisonment, and civil liability, as spesifiby the legislation.

We present a design and implementation of a system for \egtigic of version histories in
file systems based on generating message authenticaties déCs) for versions and archiving
them with a third party. A file system commits to a version drgtwhen it presents the MAC to
the third party. At a later time, a version history may be fiedi by an auditor. The file system
is challenged to produce data that matches the MAC, ensthratghe system’s past data have not
been altered. Participating in the audit process shouldatavothing about the contents of data.
Thus, we consider audit models in which organizations ra@inprivate file systems and publish
secure, one-way functions of file data to third parties. iBhbtd data may even be stored publicly.

Design goals include minimizing the network, computatlpaad storage resources used
in the publication of data and the audit process. I/O effinyas the central challenge. We provide
techniques that minimize disk 1/O when generating audiistemd greatly reduce 1/0 when verify-
ing past data, when compared with adapting a hierarchy of M#&Grersioning systems [40]. We
employ parallel message authentication codes (PMAC) [, that allow MACs to be computed
incrementally — based only on data that have changed fromréhéous version. PMAC generation
uses only data written in the cache, avoiding read I/O to fideks on disk. Sequences of versions
may be verified by computing a MAC for one version and incretalgnupdating the MAC for each
additional version, performing the minimum amount of I/OttWhcremental computation, a natu-
ral trade-off exists between the amount of data publisheltlaa efficiency of audits. Data may be
published less frequently or on file system aggregates (blmcks into files, files into directories,

etc.) at the expense of verifying more data during an audit.

76

Other technical contributions include a construct fordiaigy an audit trail based on hash
chaining and constructing hierarchies of audit inforntatiohierarchical namespaces. Additionally,
to validate version histories in the presence of failures propose the use of approximate MACs
(AMAC) [31]. This allows for a weaker statement of autheityicbut supports failure-prone storage
environments.

Techniques were designed to be independent of file systenitenitire. This has two
benefits: (1) it allows for verifiable audit trails to be implented on any file system regardless
of architecture, and (2) our design makes the audit robudistofailures, immune to backup and
restore techniques, and allows for integration into infation lifecycle management (ILM) systems.

We have implemented incremental authentication in thecext3file system, a freely-
available, open-source system designed for version mamemgen the regulatory environment [86].
Experimental results show that PMACSs can increase perfocanby 94% under common workloads

in a versioning file system when compared to traditionalabbash MACs (HMAC).

4.2 Related Work

Most closely related to this work is the SFS-RO system [40iictv provides authenticity
and integrity guarantees for a read-only file system. Weotheir model for both the publication
of authentication metadata, replicated to storage seremd use similar hierarchical structures.
SFS-RO focuses on reliable and verifiable content distdhuit does not address writes, multiple
versions, or efficient constructs for generating MACs.

Recently, there has been some focus on adding integrity atheaticity to storage sys-

tems. Oceanstore creates a tree of secure hashes agaifrstgthents of a erasure-coded, dis-

e

tributed block. This detects corruption without relying @mor correction and provides authentic-
ity [120]. Patilet al [84] provide a transparent integrity checking service itaglsable file system.
The interposed layer constructs and verifies secure chexken data coming to and from the file
system. Haubergt al [50] provide a survey of tamper-resistant storage tectascand identify
security challenges and technology gaps for multimedieagsystems.

Schneier and Kelsey describe a system for securing logs toasted machines [102]. It
prevents an attacker from reading past log entries and niakdeg impossible to corrupt without
detection. They employ a similar “audit model” that focusesthe detection of attacks, rather
than prevention. As in our system, future attacks are deddoy legal or financial consequences.
While logs are similar to version histories, in that theyatiése a sequence of changes, the methods
in Schneier and Kelsey secure the entire log, all changes to date. They do not authenticate
individual changes (versions) separately.

To our knowledge, no previous research has addressed tdwriiptand authenticity of
version sequences with each version individually veriéahbr devised constructs to update MACs
incrementally in a file system.

Efforts at cryptographic file systems and disk encryptiom ethogonal to audit trails.
Such technologies provide for the privacy of data and atittegie data coming from the disk. How-

ever, the guarantees they provide do not extend to a thitgl pad, thus, are not suitable for audit.

4.3 Secure Digital Audits

A digital audit of a versioning file system is the verificatiohits contents at a specific

time in the past. The audit is a challenge-response protmtoleen an auditor and the file system

78

to be audited. To prepare for a future audit, a file system rgée® authentication metadata that
commits the file system to its present content. This metaaia@gublished to a third party. To
conduct an audit, the auditor accesses the metadata frothitdeparty and then challenges the
file system to produce information consistent with that mata. Using the security constructs
we present, passing an audit establishes that the file sysisnpreserved the exact data used to
generate authentication metadata in the past. The audiégs@pplies to individual files, sequences
of versions, snapshots of directories and directory hibias, and an entire file system.

Our general approach resembles that of digital signatulesaoure time-stamp services,
e.g.the IETF Time-Stamp Protocol [1]. From a model standpoiatlittrails extend such services
to apply to aggregates, containers of multiple files, andetsien histories. Such services provide
a good example of systems that minimize data transfer amdgstdfor authentication metadata
and reveal nothing about the content of data prior to audit. Bdld our system around message
authentication codes, rather than digital signatures;danputational efficiency.

The publishing process requires long-term storage of atitta¢ing metadata with “fi-
delity”; the security of the system depends on storing aturmég the same values. This may be
achieved with a trusted third party, similar to a certificatehority. It may also be accomplished
via publishing to censorship-resistant stores [118].

The principal attack against which this system defends asctieation of false version
histories that pass the audit process. This class of attatikdes the creation of false versions —file
data that matches published metadata, but differ from tkee wked in its creation. It also includes

the creation of false histories, undetectably insertingedeting versions into a sequence.

79

In our audit model, the attacker has complete access to theykem. This includes the
ability to modify the contents of the disk arbitrarily. THigeat is realistic. For example, disk drives
may be accessed directly, through the device interface ardisk structures are easily examined
and modified [39]. In fact, we feel that the most likely attacks the owner of the file system. For
example, a corporation may be motivated to alter or destedq dfter it comes under suspicions
of malfeasance. The shredding of Enron audit documentstatiAAnderson in 2001 provides a
notable paper analog. Similarly, a hospital or private &dpractice might attempt to amend or
delete a patient’s medical records to hide evidence of raaljwe. Such records must be retained in
accordance with HIPAA [22].

Obvious methods for securing the file system without a thindypare not promising. Disk
encryption provides no benefit, because the attacker hassto encryption keys. It is useless to
have the file system prevent writes by policy, because tlaekst may modify file system code.
Write-once, read-many (WORM) stores alone are insufficiamidata may be modified and written
to a new WORM device.

Tamper-proof storage devices are a promising technologthéocreation of immutable
version histories [76]. However, they do not obviate thedniee external audit trails, which estab-
lish the existence of changed data with a third party. Tamgsstant storage complements audit
trails in that it protects data from destruction or modificat Also, such devices are likely to be

expensive and expense is the major obstacle to compliaBte [4

80

4.4 A Secure Version History

The basic construct underlying digital audit trails is a sagge authentication code (MAC)
that authenticates the data of a file version and binds thatoreto previous versions of the file.

We call this aversion authenticatoand compute it on version as

Ay = MACK (Vil|Av_,); Ay, = MACKk (Vo|N) (4.1)

in which K is an authentication key ard is a nonce, derived uniquely from file system metadata.
N differentiates the authenticators for files that contam shme data, including empty files. The
MAC function must be a universal one-way hash function [@4.a corollary,K must be selected

at random by the auditor (Section 4.5.2). By including thesiom data in the MAC, it authenticates
the content of the present version. By including the previeersion authenticator, we birfd, to

a unique version history. This creates a keyed hash chaiplingupast versions of the file. The
wide application of one-way hash chains in password autaitn [63], micropayments [94], and
certificate revocation [74] testifies to their utility anccaaty.

The authentication key binds each MAC to a specific identilg audit scope. During an
audit, the file system revedisto the auditor, who may then verify all version historieshauiticated
with K. K may be securely derived from a known identityg. in a public-key infrastructure. In
this case, the key binds the version history to that iden#tyfile system may use many keys to
limit the scope of an audig.g.to a specific user. For example, Plutus supports a uniquedtey f
each authentication context [59], callefilegroup Authentication keys derived from filegroup keys

would allow each filegroup to be audited independently.

81

A file system commits to a version history by transmitting atmting version authenti-
cators at a third party. The system relies on the third parstdre them persistently and reproduce
them accuratelyi.e. return the stored value keyed by file identifier and versiomiper. It also as-
sociates each stored version authenticator with a secneesiamp [68]. An audit trail consists of a
chain of version authenticators and can be used to verifyidaener in which the file changed over
time. We label the published authenticaRyr, corresponding té\, computed at the file system.

The audit trail may be used to verify the contents of a singlsion. To audit versiow,
an auditor requests version datand the previous version authenticatqy , from the file system,
computesA,, using Equation 4.1 and compares this to the published \Rjud'he computed and
published identifiers match if and only if the data currestigred by the file system are identical to
the data used to compute the published value. This proce§iesé¢he version data contenteven
thoughA,, , is untrusted.

We do not require all version authenticators to be publisiedersion history (sequence
of changes) to a file may be audited based on two publishetweasthenticators separated in time.
An auditor accesses two version authenticaRrandPR,,,i < j. The auditor verifies the individual
versiony; with the file system. It then enumerates all versigns, .. .,vj, computing each version
identifier in turn until it computeg,,. Again, A,, matchesR, if and only if the data stored on the
file system is identical to the data used to generate theoreidéntifiersincluding all intermediate
versions

Verifying individual versions and version histories rsliapon the collision resistance
properties of MACs. For individual versions, the auditoesighe untrusted\, , from the file

system, because the MAC authenticates vergj@ven when an adversary can choose imayt,.

82

A similar argument allows a version history to be verifieddzhen the authenticators of its first
and last version. Finding an alternate version history mhatches both endpoints is as difficult as
finding a collision.

Version authenticators may be published infrequently. filaesystem may perform many
updates without publication as long as it maintains a loopy®f a version authenticator. This cre-
ates a natural trade-off between the amount of space an@rebhandwidth used by the publishing

process and the efficiency of verifying version histories.

4.4.1 Incrementally Calculable MACs

I/O efficiency is the principal concern in the calculatiordarerification of version au-
thenticators at the file system. A version of a file shares détaits predecessor; it differs only
the blocks of data that are changed. As a consequence, tlsgditem performs I/O only on these
changed blocks. For performance reasons, it is imperdtatethe system updates audit trails based
only on the changed data.

To achieve our efficiency goals, we employ a parallel mesaatfeentication code (PMAC)
[6,7,9] to compute version authenticators. By using the ElV\ie create the authenticator for the
new version using the authenticator of the predecessortendata of the changed blocks. We say
that the authenticator iacrementally calculableln this way, the effort to compute the authentica-
tor scales with the size of the changed data, and, thus, hdtlamount of I/O. In contrast, a serial
MAC requires the whole file to be examined in the constructibthe MAC. A PMAC is a MAC
and, thus, preserves all of its security properties [9].

We use the parallel property of the PMAC to perform compatetiseparated in time,

rather than the original intended use of separating cortipantin space. PMAC computes a one-

83

way function on each block of the input. Each versipwomprises blocksy, (0),..., by (n) equal

to the file system block size and a file system independengseptation of the versions metadata,
denotedM,,. To be consistent with the original publication [9], for blob,,, we label the one-way
function on each block (by,). The output of the PMAC is the exclusive-or of the one-wayctions

of the input blocks and the previous version authenticator.
n R
Ay =QY by ()@Y (AL @Y My). (4.2)
j=0

This form is the full computation. There is also an increabobmputation. Assuming that version

v; differs fromvi_1 in one block onlye.g. i, (j) = by, ,(]), | # k;by, (K) # by,_,(K), we observe that
AVi = AVi—l ®Y(bVi (k)) ®Y(bVi71(k)) ®Y(AVi72) ®Y(AVi71) ®Y(Mvi—1) ®Y(Mvi)

This extends trivially to any number of changed blocks. Tpdaited version authenticator
adds the contribution of the changed blocks and removesahgiloution of those blocks in the
previous version. It also updates the past version auttetatiand metadata.

The computation of PMAC authenticators scales with I/O sibereas the performance
of a hash message authentication code (HMAC) scales witfilthgize. With PMACSs, only new
data being written to a version will be authenticated. HMA®@gst authenticate the entire file,
irrespective of the 1/0 size. This is problematic as studiksersioning file systems show that
data change at a fine granularity [86, 111]. Our results {@®et.6) confirm the same. More
importantly, the computation of the updated PMAC versiothanticator may be performed on data

available in the cache, requiring little to no additionatldl/O. PMAC computations require only

84

those data blocks being modified, which are already in caClmeputing an HMAC may require
additional I/O. This is because system caches are managepage basis, leaving unmodified and
inaccessible portions of an individual file version on dishen computing an HMAC for a file,
all file data would need to be accessed. As disk accesses aotoa 6f 10 slower than memory
accesses, computing an HMAC may be substantially worse algorithmic performance would
indicate.

The benefits of incremental computation of MACs apply to batiing data and conduct-
ing audits. When versions of a file share much data in comrhergifferences between versions are
small, allowing for efficient version verification. Incrental MACs allow an auditor to authenticate
the next version by computing the authenticity of only théadalocks that have changed. When
performing an audit, the authenticity of the entire verdiistory may be determined by a series
of small, incremental computations. HMACs do not share dldigantage and must authenticate all

data in all versions to verify authenticity.

4.4.2 File System Independence

Many storage management tasks alter a file system, inclutimgnetadata of past ver-
sions, but should not result in an audit failure. Exampletuithe: file-oriented restore of backed-up
data after a disk failure, resizing or changing the logiadlmnes underlying a file system, com-
paction/defragmentation of storage, and migration of @fata one file system to another. Thus,
audit models must be robust to such changes. We call thiegxdile system independencaudit
information is bound to the file data and metadata, tran$feras system to system, and remains
valid when the physical implementation of a file changes whth caveat that all systems storing

data support audit trails.

85

Our authenticators use the concephofmalized metadattor file system independence.
Normalized metadata are the persistent information thedriee attributes of a file system object
independent of the file system architecture. These metaudtale: file size, ownership and per-
missions, and modification, creation and access times.€Tffads are common to most file systems
and are stored persistently with every file. Normalized ot do not include physical offsets and
file system specific information, such as inode number, diskkbaddresses, or file system flags.
These fields are volatile in that storage management tasksgettheir values. Normalized metadata

are included in authenticators and become. part of a filas fba the purposes of audit trails.

4.4.3 Hierarchies and File Systems

Audit trails must include information about the entire staf the file system at a given
point in time. Auditors need to discover the relationshipgaeen files and interrogate the contents
of the file system. Having found a file of interest in an audittunal questions include: what other
data was in the same directory at this time? or, did otherifilise system store information on the
same topic? The data from each version must be associatea witherent view of the entire file
system.

Authenticating directory versions as if they were file vensi is insufficient. A directory
is a type of file in which the data are directory entries (nanogle number pairs) used for indexing
and naming files. Were we to use our previous authenticatmstaaction (Equation 4.2), a directory
authenticator would be the MAC of its data (directory erdyighe MAC of the previous directory
authenticator and its normalized metadata. However, thisteuct fails to bind the data of a di-
rectory’s files to the names, allowing an attacker to undebdg exchange names of files within a

directory.

86

We have developed a construction of trees of MACs that biwlivitual versions and
their names to a file system hierarchy, which authenticdtesentire versioning file system. In
addition to the normalized inode information and previouthanticator used to authenticate files,
directory authenticators are composed of name-authémtipairs. Each file within the directory

concatenates its authenticator to its corresponding nantka one-way hash of the result is taken.

Ap, = (XY (namg|A,) @Y (Ap,_,) ®Y (Mp,).
=0

This binds each file and sub-directories data to their namiiparent directory. Directory version
authenticators continue recursively to the file system, f@ading the entire file system image. The
SFS-RO system [40] employed a similar technique to fix thearinof a read-only file system
with single versions of each file and directory. Our methodferdfrom SFS-RO in that they are
incremental and must account for updates.

For efficiency reasons, we bind versions to the directorythenticator lazily. Figure 4.1
shows how directord binds to filesS, T,U. This is done by including the authenticators for specific
versionsSy, To,U, that were current at the time versi@? was created. However, subsequent file
versions €.9. $, Ts) may be created without updating the directory versionentibatorAp,. The
system updates the directory authenticator only when tideots changei.e. files are created,
destroyed or renamed. This corresponds well with our natf@directory version. In this example,
when deleting fildJ (Figure 4.1) the authenticator is updated to the currergioes. Were we to
bind directory version authenticators directly to the eomtof the most recent file version, they
would need to be updated every time that a file is written. Tinidudes all parent directories

recursively to the file system root — an obvious performareern.

87

Ap, =Y(SAs) @Y (T|Ar) ®Y(U|Ay,) @Y (Ap,) ®Y (Mp,)

Ap, = Y(SAs,) @Y (T|Ar) @Y (Ap,) ®Y(Mp,)

D3

s N

Figure 4.1: Updating directory version authenticators mfile U is deleted.

88

Binding a directory authenticator to a file version bindsoitatl subsequent versions of
that file, by hash chaining of the file versions. This is lirdite the portion of the file’s version
chain within the scope of the directory. (Ext3cow employsastamps for version numbers, which
can be used to identify the valid file versions within eaclectiory version.)

Updating directory authenticators creates a time-spaaketoff similar to that of publi-
cation frequency (Section 4.4). When auditing a directarg particular point in time, the auditor
must access the directory at a point in time and then follewcthildren files’ hash chains forward
to that point in time. Thus, updating directory authenticatmore frequently may be desirable to

speed the audit process.

4.5 File System Implementation

We have implemented digital audit trails using PMACs in eri8 [86], an open-source,
block-versioning file system designed to meet the requingsnef electronic record management
legislation. Versions of a file are implemented by chainingdies together in which each inode
represents a version. The file system traverses the inodle tohgenerate a point-in-time view of a
file. Ext3cow provides the features needed for an implentientaf audit trails: it supports contin-
uous versioning, creating a new version on every write; arantains old and new versions of data
and metadata concurrently for the incremental computatiorersion authenticators using parallel
MACSs. Version authentication is achieved by storing thasim’s MAC in its corresponding inode.
We have already retrofitted the metadata structures of exdBgport versioning and secure deletion
based on authenticated encryption [87, 88].Version atitanors are a straightforward extension to

ext3cow’s already augmented metadata, requiring only dfges per inode.

89

45.1 Metadata for Authentication

Metadata in ext3cow have been improved to support increathgrtsioning authentica-
tors for electronic audit trails. To accomplish this, ext&c“steals” a single data block pointer
from the inode, replacing it with an authentication blockrper, i.e. a pointer to disk block hold-
ing authentication information. Figure 4.2 illustrateg tmetadata architecture. The number of
direct blocks has been reduced by one, from twelve to eleeerstoring an authenticator block
(i_data[11]). Block stealing for authenticators reduces the effecfileesize by only one file
system block, typically 4K.

Each authenticator block stores five fields: the currentmerauthenticatorAy,), the au-
thenticator for the previous versioA(,), the one-way hash of the authenticator for the previous
version (A, _,)), the authenticator for the penult-previous versiéq (), and the the one-way
hash of the authenticator for the penult-previous versiof(,)). Each current authenticator
computation requires access to the previous and penwlispieauthenticators and their hashes. By
storing authenticators and hashes for previous versiotis thve current version, the system may
avoid two read I/Os, one for each previous version authaaticand hash computations. When a
new version is generated and a new inode is created, thendigtter block is copy-on-written and
“bumps” each entryi.e., copying the once current authenticatéy, J to the previous authenticator
(Ay,_,), and the previous authenticatdk,(,) and hashY(Ay, ,)) to the penult-previous authenti-
cator @y, ,) and hash¥ (A, ,)). Since the hash of the once current authentica®Qp (s not yet
known, theY (A, ,) field is zeroed, and is calculated on a as-needed basis.

Authenticator blocks should not increase the number of g@sormed by the system.

The block allocator in ext3cow makes efforts to co-locatedmetadata and authenticator blocks

90

_dat a[10]
_data[11]
_data[12]
_data[13]
_dat a[14]

Inode

Authenticator Block

Figure 4.2: Metadata architecture to support version autittegors.

91

in a single disk drive track, maintaining contiguity. Autttieator blocks are very likely to be read
in the same 1/O as the inode or data blocks, allowing the atittetor block to be read out of the

track cache.

4.5.2 Key Management

Key management in ext3cow uses lockboxes [59] to store dilpeauthentication key.
The file owner’s private key unlocks the lockbox and providesess to the authentication key.
Lockboxes were developed as part of the authenticated jgtimnyand secure deletion features of
ext3cow [87,88].

Per-file authentication keys are generated by the systewllatboration with the auditor.
The auditor must add randomness to the generatidf tof meet the definition of a universal one-

way hash function [82]. Authentication keys are then stavéHin within a user’s lockbox.

4.6 Experimental Results

We measure the impact of authentication on versioning fikdesgs and compare the
performance characteristics of HMAC and PMAC in the ext3eawsioning file system. We begin
by comparing the CPU and disk throughput performance of HMAG PMAC by using two micro-
benchmarks; one designed to contrast the maximum throtiglpabilities of each algorithm, and
one designed to highlight the benefits of the incrementglgntees of PMAC. We then use a traced
file system workload to illustrate the aggregate perforredmnefits of incremental authentication
in a versioning file system. Lastly, we use file system tracashtiracterize some of the overheads

of generating authenticators for the auditing environmddth authentication functions, PMAC

92

and HMAC, were implemented in the ext3cow file system usimgstiandard SHA1 hash function
provided by the Linux kernel cryptographic API1[77]. All esqgments were performed on a Pentium
4, 2.8GHz machine with 1 gigabyte of RAM. Trace experimergsesnrun on a 80 gigabyte ext3cow

partition of a Seagate Barracuda ST380011A disk drive.

4.6.1 Micro-benchmarks

To quantify the efficiency of PMAC, we conducted two micraabkemark experiments:
createand append The createtest measures the throughput of creating and authenticéites
of size X bytes, whereN = 0,1,...,30 (1 byte to 1 gigabyte files). The test measures both CPU
throughput,.e. the time to calculate a MAC, and disk throughpug, the time to calculate a MAC
and write the file to disk. Files are created and written irirthatirety. Thus, there are no benefits
from incremental authentication. Thependexperiment measures the CPU and disk throughput of
appending ® bytes to the same file and calculating a MAC, whisre= 0,1,...,29 (1 byte to 500
megabytes). For PMAC, an append requires only a MAC of eashdata block and an XOR of
the results with the file’s authenticator. HMAC does not hthie incremental property and must
MAC the entire file in order to generate the correct authetnic requiring additional read 1/0. We
measure both warm and cold cache configurations. In a warhecacevious appends are still in
memory and the read occurs at memory speed. In practicetearsgoes not always find all data in
cache. Therefore, the experiment was also run with a colde;dmefore each append measurement,
the cache was flushed.

Figure 4.3(a) presents the results of ttreate micro-benchmark. Traditional HMAC-
SHAZ1 has higher CPU throughput than PMAC-SHAL, saturativey@PU at 134.8 MB/s. The

PMAC achieves 118.7 MB/s at saturation. This is expecte®MAC-SHAL1 must perform at least

93

' ' ' ' ' ' 'AMAC-SHAL CPU ——
160 - PMAC-SHAL CPU ------- 8
HMAC-SHAL Disk --------
PMAC-SHAL Disk -

140 | i
120 - S —— .

Q /

& /

& 100t / 4

> /

Q ~

=3

3 80 -

Ny

D

>

2

£ 60| .

40 - .
ok T i
1 1 1 1 1 1 1 1 1

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000
File Size (Kbytes)
(a) Create

T T
PMAC-SHAL CPU ——
160 HMAC-SHAL CPU --——--

PMAC-SHAL Disk --------
HMAC-SHAL Disk -
140 HMAC-SHA1 Disk-Cold ——---

120

100

80

Throughput (Mbytes/sec)

60

40

20

1 10 100 1000 10000 100000

Append Size (Kbytes)
(b) Append

Figure 4.3: Results of micro-benchmarks measuring the GRlLtak throughput.

94

one extra call to SHA1 for each block [6]. Additionally, SHApPpends the length of the mes-
sage that it's hashing to the end of the message, padding B(2tbit boundaries. PMAC-SHAL,

therefore, hashes more data; umt12 bits more fom blocks. Despite PMAC’s computational

handicap, disk throughput measurements have less dispAIMAC-SHAL achieves a maximum

of 28.1 MB/s and PMAC-SHA1 a maximum of 26.6 MB/s. This illaes that calculating authen-
ticators for a file system is I/O-bound, making PMAC-SHA1l$mate performance comparable to
HMAC-SHAL.

The results of the@ppendmicro-benchmark makes a compelling performance argument
and are exhibited in Figure 4.3(b) — note the log scale. WemksPMAC-SHAL outperforms
HMAC-SHAL in both CPU and disk throughput measurements. EBMBHAL bests HMAC-SHAL
CPU throughput, saturating at 120.3 MB/s, compared to HM3AL at 62.8 MB/s. Looking
at disk throughput, PMAC-SHAL1 also outperforms the beseaaf an HMAC calculation, warm-
cache HMAC-SHAL, achieving a maximum 31.7 MB/s, comparedaom-cache HMAC-SHA1
at 20.9 MB/s and cold-cache HMAC-SHAL1 at 9.7 MB/s. This perfance gain is a function of
the incremental nature of PMACs. In addition to the extra potation to generate the MAC, an
ancillary read 1/O is required to bring the old data into tha®buffer. While theappendbenchmark
is contrived, it is a common I/O pattern. Many versioning filstems implement versioning with
a copy-on-write policy. Therefore, all I/O that is not a fallerwrite is, by definition, incremental

and benefits from the incremental qualities of PMAC.

4.6.2 Aggregate Performance

We take a broader view of performance by quantifying the eggpe benefits of PMAC on

a versioning file system. To accomplish this, we replayed foonths of system call traces [97] on

95

| No Authentication| PMAC-SHA1 | HMAC-SHAL |
| 198MB/s | 1.77MB/s | 108.78 KB/s |

Table 4.1: The trace-driven throughput of no authenticatftMAC-SHAL, and HMAC-SHAL.

an 80 gigabyte ext3cow partition, resulting in 4.2 gigabyiédata in 81,674 files. Our experiments
compare trace-driven throughput performance as well amtakcomputation costs for performing
a digital audit using the PMAC and HMAC algorithms. We analyggregate results of run-time
and audit performance and examine how the incremental ciatigu of MACs benefits copy-on-

write versioning.

Write Performance

The incremental computation of PMAC minimally degradedina-system performance
as compared to HMAC. We measure the average throughput cfygtem while replaying four
months of system call traces. The traces were played asdgsbssible in an effort to saturate
the 1/0 system. The experiment was performed on ext3cowgusirauthentication, HMAC-SHA1
authentication and PMAC-SHAL authentication. Resultspaesented in Table 4.1. PMAC-SHA1
is able to achieve a 93.9% improvement in run-time perfoceasver HMAC-SHAL; 1.77 MB/s
versus 108.78 KB/s. HMAC-SHAL's degradation is due to thditamhal read 1/0 and computation
time it must perform for every call to write. The performammenalty incurred by PMAC-SHA1
is minimal due to its ability to compute authenticators gsomly in-cache data. PMAC-SHAL
achieves 89% of the throughput of a system with no autheitita

To better understand the run-time performance differebetseen PMAC and HMAC,

we characterize the number and size of writes and how thewaiten to the various files in the

96

system. Figure 4.4(a) presents statistics on the numbesiamof write 1/0s, whereas Figure 4.4(b)
shows number of write 1/0s performed by file size. Both plotslag-log. We observe that of the
16,601,128 write 1/Os traced over four months, 99.8% of tfks lare less than 100K, 96.8% are
less than 10K, and 72.4% are less than 1K in size. This eligsdhe fact that a substantial number
of 1/0s are small. We also observe that files of all sizes veceiany writes. Files as large as 100
megabytes receive as many as 37,000 write I/Os over theecotifeur months. Some files, around
5MB in size, receive nearly two million 1/0Os. These graphsevghhat 1/O sizes are, in general,
small, and that files of all sizes receive many 1/Os.

The relationship between 1/O size and file size reveals tbhegsity of incremental MAC
computation. Figure 4.4(c) presents the average write id®as a percentage of the file size over
file sizes. This plot shows that there are few files that reckivge writes or entire overwrites in
a single 1/O. In particular, files larger than 2MB receivetesithat are a very small percentage of
their file size. The largest files receive as little as 0.025%heir file size in writes, and nearly
all files receive less than 25% of their file size in write I/tsis this disproportionate 1/O pattern
that benefits the incremental properties of PMAC. When mi@s teceived by large files are small,
a traditional HMAC suffers in face of additional computatibme and supplementary I/Os. The

performance of PMAC, however, is immune to file size and isnafion of write size alone.

Audit Performance

To generate aggregate statistics for auditing, we aged ltheyfstem by replaying four
months of traced system calls, taking snapshots daily. \&e gerformed two audits of the file
system, one using HMAC-SHAL and one using PMAC-SHAL. Ouitazadculated authenticators

for every version of every file. Table 4.2 presents the aggeeesults for performing an audit using

97

le+07

1e+06

100000

10000

Number of I0s

1000

100

10

1 10 100 1000 10000 100000
0 Size (Kbytes)

(@) Number of v{/rite I/O)s by I/O size

1e+07

le+06

100000 ‘

10000

Number of 10s

1000

100

10

1 10 100 1000 10000 100000
File Size (Kbytes)

(b) Number of write I/Os by file size

1

0.9

0.8

0.7

0.6

05

04

Average 10 Size/File Size (%)

03 Hil-1!

0.2

01 \‘

‘

o \|\\‘~J1MJ TRV P8 FOE N AT

0 2000 4000 6000 8000 10000
File Size (Kbytes)

(c) Average write I/O size as per)centage of the file size by
file size

Figure 4.4: Characterization of write 1/0Os from trace-drivexperiments.

98

| Number of Versiong HMAC-SHAL1 (seconds) PMAC-SHAL (seconds)

All 11209.4 10593.1
>2 670.1 254.4

Table 4.2: The number of seconds required to audit all filesfiges with two or more version in an
entire file system using HMAC-SHA1 and PMAC-SHAL.

PMAC-SHA1 and HMAC-SHA1L. The table shows the result for dédiand the result for those
files with two or more versions. Auditing the entire 4.2 gigeds of file system data using standard
HMAC-SHAL techniques took 11,209 seconds, or 3.11 hoursnd BMAC-SHA1, the audit took
10,593 seconds, or 2.94 hours; a savings of 5% (10 minutes).

Most files in the trace (88%) contain a single version, tylpidauser file systems. These
files dominate audit performance and account for the siityilaf HMAC and PMAC results. How-
ever, we are interested in file systems that contain medinahcial, and government records and,
thus, will be populated with versioned data. To look auditperformance in the presence of ver-
sions, we filter out files with only one version. On files withoter more versions, PMAC-SHAL
achieves a 62% performance benefit over HMAC-SHA1L, 670 284 seconds. A CDF of the
time to audit files by number of versions is presented in Fgub(a). PMAC-SHAL achieves a
range of 37% to 62% benefit in computation time over HMAC-SH#éxdfiles with 2 to 112 ver-
sions. This demonstrates the power of incremental MACs wieeifying long version chains. The
longer the version chain and the more data in common, therld@AC performs.

Looking at audit performance by file size shows that the beiefilerived from long
version chains. Figure 4.5(b) presents a break down of theeggte audit results by file size. There
exists no points at which PMAC-SHAL performs worse than HMBBA1, only points where they

are the same or better. Where PMAC-SHA1 and HMAC-SHA1 pdmtssect, files either have

99

T T T T T
,
|
,
!
,
i
o
<<
IT
Q9D
QO
I
==
aT ,
,
|
,
!
!
|
\
\
!
,
L !
\
!
\
\
/,
|
!
/,
!
\
\
/,
!
L \
\
\
\
/
\
|
\
\
\
\
\
\
\
\
\
- //
/
/
,
//
\
N
\
//
//
.
N
L N
AN
~\
1 1 1 1 1 1
o o o o o o o
o o o o o o o
[¢) ~ () [Te) < ™ N

(spuo2as) upny aindwo) 01 swi]

80 100 120

60
Number of Versions

(a) The CDF of the time to audit an entire file system of filedwaitore than one version, by number

of versions

40

20

T T T T T T
|
|
| [}
i c
' R
23
I T >
) S
QO m cemzzmoommmmmmmmmmo oo
<<
£
- >
(a2}
5] R N
SmmmmmmmmmemsoIzooCT eI
7]
44
(]
>
—
B N ——mm———————m—mmmmmmo
17 R ————— e
= e,
o
7]
4
(]
>
o
B N oo===ooooITIITTT
(%) cmmmzzzoo—m-m——----ooTTTR
c
RS
(7]
- 4
(]
>
o
LS M
(%]
- c
RS
7]
o
(]
>
0 —_—
O
1 1 1 1 1 1
o o o o o o o
o o o o o o o
w o n o [Tel o Yol
< < ™ (52} N N -

(sw) upny 8ndwo 01 swi |

5000 6000 7000 8000

4000
File Size (Kbytes)

3000
(b) Aggregate results for auditing an entire file system lgydikze

2000

1000

Figure 4.5: Aggregate auditing performance results for EVBHAL1 and HMAC-SHAL.

100

450 I

Day
Hour ———----
200 Minute --------
350 /
N |
i 300 A\J
[}
5 / \ (— /
5 250 v
Ll i —_
|: 200 A\/ A A /\ A A
&
50 w ‘ W V4
|y P T T R | VR WS P TIT T I RV PR TIOET S PO TR
0 bt i Mm‘»}m{:\:”&‘"w.m‘u’u‘ﬁf‘\.mA &zx“m&ﬁﬂ“\a“wMM «*;’W:’L ittty ki gﬁmﬁ‘f%‘*‘ T —

0 20 40 60 80 100
Simulation Time (Days)

Figure 4.6: Size of authentication data from four monthsrated workloads at three snapshot
intervals.

a single version or are files in which versions contains noeshdata. As the number of versions
increase and much data are shared between versions, lacgepgincies in performance arise. Some
examples of files with many versions that share data are atetbtPMAC shows little performance

variance with the number of versions.

4.6.3 Requirements for Auditing

As part of our audit model, authenticators are transferedntb stored at a third party.
We explore the storage and bandwidth resources that areeddar version authentication. Four
months of file system traces were replayed over differenpsmat intervals. At a snapshot, au-
thentication data is transfered to the third party, coningtthe file system to that version history.
Measurements were taken at day, hour and minute snapshkotalst During each interval, the

number of file modification and number of authenticators geted were captured.

101

Figure 4.6 presents the size of authentication data getkoster the simulation time for
the three snapshot intervals. Naturally, the longer thesmat interval, the larger the number of
authenticators generated. However, authentication datdatively small; even on a daily snapshot
interval, the largest transfer is 450K, representing aB@,M00 modified files. Authenticators gen-
erated by more frequent snapshot (hourly or per-minuteg¢mexceed 50KB per transfer. Over the
course of four months, a total of 15.7MB of authenticatiotada generated on a daily basis from
801,473 modified files, 22.7MB on a hourly basis from 1,16%,&bdified files, and 45.4MB on
a per-minute basis from 2,324,285 modified files. The sizeutifemticator transfer is invariant of
individual file size or total file system size; it is directlygportional to the number of file modi-
fications made in a snapshot interval. Therefore, the cun/€ggure 4.6 are identical to a figure

graphing the number of files modified over the same snapstesvais.

4.7 Future Work

Conducting digital audits with version authenticatorsvésawork to be explored. We
are investigating authentication and auditing models doanot rely on trusted third parties. We
also discuss an entirely different model for authenticabased on approximate MACs, which can

tolerate partial data loss.

4.7.1 Alternative Authentication Models

Having a third party time-stamp and store a file system’semnitbators may place undue
burden, in terms of storage capacity and management, ohitdeptarty. Fortunately, it is only one

possible model for a digital auditing system. We are culyemtploring two other possible archi-

102

File System 3rd Party File System 1 File System 2 File System {

Datd N A Datg Datg Data
v ' 1 1 Y
AN NA A [B [C
A (03 | A’ | B’

(a) Storage-less Third Party (b) Cooperative Authentication

Figure 4.7: Alternative models for digital auditing.

tectures for managing authentication data; a storaget@sisparty and cooperative authentication.
In a storage-less third party model (Figure 4.7(a)) a filéesypswould generate authenticators and
transmit them to a third party. Instead of storing them, kineltparty would MAC the authenticators
and return them to the file system. The file system stores hetbriginal authenticators and those
authenticated by the third party. In this way, the third patbres nothing but signing keys, placing
the burden of authentication storage completely on theygeesn. When the file system is audited,
the auditor requests the signing keys from the third partg, performs two authentication steps:
first, checking the legitimacy of the stored authenticatord then checking the authenticity of the
data themselves.

This design has limitations. The scheme doubles the amdwnitibentication data trans-
fered. Additionally, because the third party keeps no @drany file, an attacker may delete an
entire file system without detection or maintain multiple #lystems, choosing which file system
to present at audit time. Portions of the file system may nadddeted or modified, because the
authenticators for version chains and directory hieraxhind all data to the root authenticator.

A further variant (Figure 4.7(b)) groups peers of file systdogether into a cooperative

103

ring, each storing their authentication data on an adjgifiile system. A file system would store
the previous system’s authenticator in a log file, which issequently treated as data, resulting in
the authenticators being authenticated themselves. Tthgaticator for the log file is stored on an
adjoining system, creating a ring of authentication. Tleisign relieves the burden on a single third
party from managing all authentication data and removesitigge point of failure for the system.
This architecture also increases the complexity of tampedby a factor ofN, the number of links

of in the chain. In order to tamper with a file, an attacker mustetectably modify the data, the
data’s authenticator, the authenticator’s authenticatmt so on. Because an adjoining file system'’s
authenticators are kept in a single log file, only one autbattr is generated for that entire file

system, preventing a glut of authentication data.

4.7.2 Availability and Security

A verifiable file system may benefit from accessing only a partf the data to establish
authenticity. Storage may be distributed across unraishibs [32, 62], such that accessing it in
entirety is difficult or impossible. Also, if data from any gtion of the file system are corrupted
irreparably, the file system may still be authenticated, neag with standard authentication, altering
a single bit of the input data leads to a verification failure.

To audit incomplete data, we propose the use approximatayre and approximately-
correct MAC (AMAC) introduced by Di Crescenzo et al. [31]. &kystem verifies authenticity
while tolerating a small amount of modification, loss, orroption of the original data. The exact

level of tolerance can be tuned. A more detailed construtbeafound in Appendix A.

104

We parallelize the AMAC construction to adapt it to file syste in addition, we propose
to use PMAC as building block in the AMAC construction [319, dllow for incremental update.
The atom for the computation is a file system block, rathen th&it. The approximate security
and correctness then refer to the number of corrupted olingiddocks, rather than bits. We give
details of the algorithms for AMAC using PMAC in the Appendiut we leave a formal treatment
of incremental AMACSs for future work.

The chief benefit of using the AMAC construction over regWN&kC constructions lies
in verification. Serial and parallel MACs require the entinessage as input to verify authenticity.
Using AMAC, a portion of the original message can be ignofigus allows a weaker statement of
authenticity to be constructed even when some data are ilatdea The drawback of AMAC lies
in the reduction of authenticity. With AMAC, some data mayaoeeptably modified in the original

source.

105

Chapter 5

Conclusions

“We're just gettin’ started!”
— Ace Frehley

ealth care providers, private companies, and federal agg@ace now subject to sweep-
H ing regulations that affect the management of their elaaroecords. These include:
the Health Insurance Portability and Accountability ActiiPAA), the Gramm-Leach-Bliley Act
(GLBA), the Federal Information Security Management AdSHA) and the Sarbanes-Oxley Act
(SOX). However, this legislation is unclear about whichhtealogies companies are to implement
in order to be compliant. We distilled federal electronicael management legislation into four
technological categories: versioning with real-time as¢secure deletion, digital privacy and digi-
tal authenticity. We address each of these categories vtétbhaological solution designed to meet

the requirements of electronic record legislation.

106

5.1 Summary of Contributions

We have implemented three contributions to the field of mguy compliant storage.
The first, ext3cow, is a fully implemented open-source filstagn that provides users with a new
and intuitive interface for accessing data in the past. &3 versioning interface supports many
features: file system snapshot, per-file versioning, vamsimmeration, and a continuous-time view
of changes to a file system. To provide these functions, extagses a copy-on-write scheme
and versioning metadata that incur little overhead andbéixhismall data footprint. All modifica-
tions made to ext3cow are encapsulated within the on-dislsfistem, avoiding the disadvantages
of kernel (virtual file system) or user-space implementetioGiven these features, ext3cow sup-
ports traditional applications of versioning: easy acdessn-line backups; recovery from system
tampering; read-only, point-in-time snapshots for dataingj; and, file-oriented deletion recovery.
However, ext3cow was specifically designed for the managénfalata in compliance with federal
electronic records legislation. As it stands, ext3cow m#&t mandated versioning and auditability
requirements. In addition, ext3cow’s file organizationugable for our implementation of secure
deletion.

To this end, we defined a model for secure deletion in storggeems that share data
between files, specifically, versioning file systems thatggrwith federal regulations. Our model
supports authenticated encryption, a unique feature fersfistems. A data block is encrypted
and converted into a ciphertext block and a small stub. ®fcawverwriting the stub makes the
corresponding block irrecoverable.

We present two algorithms within this model. The first algori employs the all-or-

nothing transform so that securely overwriting a stub or B2§ bits of a ciphertext securely deletes

107

the corresponding block. The second algorithm generatasdom key per block in order to make
encryption non-repeatable. The first algorithm producesemaompact stubs and supports a richer
set of deletion primitives. Whereas the second algorithovigdes stronger privacy guarantees.

Both secure deletion algorithms meet our requirement ofmiking secure overwriting,
resulting in a 200 times speed-up over previous techniqiiée addition of stub metadata and a
cryptographic device driver degrade performance minynalle have implemented secure deletion
in the ext3cow versioning file system for Linux and in a sealeeice driver.

Lastly, we have introduced a model for digital audits of i@mig file systems that sup-
ports compliance with federally mandated data retentiadedimes. In this model, a file system
commits to a version history by transmitting audit metadatathird party. This prevents the owner
of the file system (or a malicious party) from modifying paatadwithout detection. Our techniques
for the generation of audit metadata use incremental atitia¢tion methods that are efficient when
data modifications are fine grained, as in versioning fileesyst Additionally, authentication meth-
ods are resilient to data loss or temporary outages. Expetahresults show that incremental
authentication can perform up to 94% faster than traditiseguential authentication algorithms.
We have implemented incremental authentication in ext3aod; like all technologies presented,

available atwww.ext3cow.com

108

Appendix A

The AMAC Construct

The AMAC Construct (see [31]): Let M denote the message space whare M is an
instance of a message, ktrepresent a distance function computed dvefsuch as the hamming
distance), and It represent a secret key. Approximately-secure and approximately-correct MAC
for distance function ds represented by an authentication tag generation ahgofiag(m,k, d) that
computes the AMAC and returns the vahag, and a verification algorithrierify (m,k,tag, d) that
returnstrue if and only iftag=Tag(m, k,d).

An AMAC has (d, p,) —approximate-correctnes$ tag=Tag(m,k,d), then with proba-
bility at leastp Verify (m', k,tag,d) will returntrue if d(m,m’) <&. An AMAC has(d,y,t,q,€)—approximate-
securityif an adversary operating in timienakesgy queries to a tag generation oracle, the probability
that the adversary can construct a messdgrich thad(m,m’) > yandVerify (m', k,tag,d) returns
true, is at mosk.

Tag and Verify (see [31]):To construct an AMAC tag using thag algorithm, perform the follow-

ing steps. Each AMAC also takes as input a couatéat seeds randomness in ffegg and Verify

109

algorithms;ct should not be reused.

1. Setx; = [n/2cd]|, wheren is the size of the message in bits ané a pre-specified

block size in bits.
2. Setxp = [10l0g(1/(1—p))].

3. Write (me@ L) asmy|my| ... My, /¢, wherel is a random bit string anttis a random
permutation both unique given the valueabfand eachr; represents a block of size

of the manipulated message.

4. Using randomness based cin createx, message subsets,;, S, ...,S,,, where each

subset is the concatenationxafrandomly chosen blocks.

5. For each subset, computf = H(S,k), whereH can be implemented as a secure
MAC (formally it has to be a target collision resistant fuoa) andk is retrieved from

randomness based on the seed
6. Return as the final tagt|shy|shy| ... |sh,.

The Verify algorithm performs steps 1 through 5 of the above algoritnmessagen acquiring
sub-tagssh, sh, ..., sh . Verify then returndrue if and only if sh = sH for at leastox, sub tags,
wherea =1-1/2,/e—1/2e.

Constructing and verifying tags allows for the original umgo be partially modified,
corrupted or even missing for up &obits, and still maintain approximate correctness and #gcur

so long as the underlying functidt is a universal one-way hash function [82].

Update (Incremental AMAC): An AMAC based on a parallel MAC can be efficiently updated

when only a portion of the original message has changed;tbelynodified block is needed.

110

Our idea is to replackl with a parallel MAC. We are assuming that it is possible tddui
a (finite) family of universal one-way hash functions frone fAMAC construction (or from other
deterministic parallel MAC constructions).

The Update algorithm takes as input an original message blbck modified message
block b/, the position of the modified block within the original inpildta source, and the authen-

ticator tag being updateat|shy|. .. |sh,.

1. Setx; = [n/2cd]|, wheren is the size of the message in bits ané a pre-specified

block size in bits.
2. Setxp = [100g(1/(1- p))].
3. Usern(m) to compute the permuted position of the modified block in tlessage.

4. Using randomness based @ndetermine the subsets and positions within each subset

where blockb is used.

5. Since we are using PMAC, we can efficiently update eachagybfter computing each
subset and position whebds placed. Computsi =sh @Y (b) &Y (b'), whereY () is

computed as in Section 4.4.1.

6. Return as the updated tag|sh |shp| ... [sH,,.

Initially computing the authenticator value for a portiohtlee file system using AMAC
requires the entire input source to be accessed, just asuldwbusing a conventional PMAC
algorithm. Computationally there is more work to be perfedmhen computing each AMAC, but
memory operations are negligible when compared with didk Updating an incremental AMAC

requires the same number of disk accesses as updating a PMAC.

111

Bibliography

[1]

2]

[3]

[4]

[5]

[6]

C. Adams, P. Cain, D. Pinkas, and R. Zuccherato. IETF RE&L3ime-stamp protocol (tsp).

IETF Network Working Group, 2001.

R. Anderson. The dancing bear — a new way of composingecgphinProceedings of the

International Workshop on Security Protocaofspril 2004.

A. Azagury, M. E. Factor, and J. Satran. Point-in-tim@ygoYesterday, today and tomorrow.
In Proceedings of the Goddard Conference on Mass StoragenSyated Technologiepages

259-270, April 2002.

C. Batten, K. Barr, A. Saraf, and S. Trepetin. pStore: Awse peer-to-peer backup system.
Technical Memo MIT-LCS-TM-632, Massachusetts Institutdechnology Laboratory for

Computer Science, October 2002.

S. Bauer and N. B. Priyantha. Secure data deletion foux file systems. IfProceedings of

the USENIX Security SymposiuAugust 2001.

M. Bellare, O. Goldreich, and S. Goldwasser. Incremieatgptography and application to
virus protection. IrfProceedings of the ACM Symposium on the Theory of Comptaggs

45-56, 1995.

112

[7]

[8]

M. Bellare, R. Guérin, and P. Rogaway. XOR MACs: New nugth for message authentica-
tion using finite pseudorandom functions. Advances in Cryptology - Crypto’95 Proceed-

ings volume 963, pages 15-28. Springer-Verlag, 1995. Lectuted\in Computer Science.

M. Bellare and C. Namprempre. Authenticated Encrypati®elations among notions and
analysis of the generic composition paradigm. Aldvances in Cryptology - Asiacrypt’00

Proceedingsvolume 1976. Springer-Verlag, 2000. Lecture Notes in Cat@pScience.

[9] J. Black and P. Rogaway. A block-cipher mode of operafmmparallelizable message au-

[10]

[11]

[12]

[13]

[14]

thentication. InAdvances in Cryptology - Eurocrypt’'02 Proceedingslume 2332, pages

384 — 397. Springer-Verlag, 2002. Lecture Notes in Compbitéence.

M. Blaze. A cryptographic file system famix. In Proceedings of the ACM conference on

Computer and Communications Securfipges 9—16, November 1993.

M. Blaze. High-bandwidth encryption with low-bandwhidsmartcards. Irfrast Software

Encryption volume 1039, pages 33—40, 1996. Lecture Notes in Computen&e.

M. Blaze, J. Feigenbaum, and M. Naor. A formal treatnanmemotely keyed encryption. In
Advances in Cryptology — Eurocrypt'98 Proceedingslume 1403, pages 251-265, 1998.

Lecture Notes in Computer Science.

D. Boneh and R. Lipton. A revocable backup systenPioceedings of the USENIX Security

Symposiumpages 91-96, July 1996.

V. Boyko. On the security properties of OAEP as an alhothing transform. Iiddvances in
Cryptology - Crypto’99 Proceedingpages 503-518. Springer-Verlag, August 1999. Lecture

Notes in Computer Science.

113

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

R. Bryant, R. Forester, and J. Hawkes. Filesystem pednce and scalability in Linux
2.4.17. InProceedings of the USENIX Technical Conference, FREEN&EKTpages 259—

274, June 2002.

R. Card, T. Y. Ts'o, and S. Tweedie. Design and impleratoih of the second extended file

system. InProceedings of the Amsterdam Linux Confered€94.

A. Chervenak, V. Vellanki, and Z. Kurmas. Protecting filystems: A survey of backup
techniques. IrProceedings of the Joint NASA and IEEE Mass Storage Corderdfarch

1998.

J. Chow, B. Pfaff, T. Garfinkel, and M. Rosenblum. Shiadd/our garbage: Reducing data
lifetime through secure deallocation. Rroceedings of the USENIX Security Symposium

pages 331-346, August 2005.

S. Chutani, O. T. Anderson, M. L. Kazar, B. W. Leverett, W Mason, and R. N. Side-
botham. The Episode file system. Pnoceedings of the Winter USENIX Technical Confer-

ence pages 43-60, 1992.

U.S. Securities Exchange Commission. Commissionangd to broker-dealers on the use
of electronic storage media under the electronic signatirglobal and national commerce

act of 2000 with respect to rule 17a-4(f). SEC Release Nal42B8, May 2001.

United States Congress. The Sarbanes-Oxley Act. 1. RCHarts 228, 229 and 249.

United States Congress. The Health Insurance Padtiahiid Accountability Act, 1996.

114

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

United States Congress. The Health Insurance Patiabihd Accountability Act Privacy

Rule. 67 FR 53182, 1996.

United States Congress. The Gramm-Leach-Bliley ABtUSC, Subchapter §6801-6809,

1999.

United States Congress. Federal Information SeciMiyagement Act. Public Law 107-

347, USC 44 Chapter 35, Subchapter Il Information Secu2iip?2.

B. Cornell, P. A. Dinda, and F. E. Bustamante. WaybackisAr-level versioning file system
for Linux. In Proceedings of the USENIX Technical Conference, FREEN&¥KI'pages

19-28, June 2004.

Digital Equipment CorporationvVax/VMS System Software Handbob885.

Symantec Corporation. Understanding and complyintp WwiSMA. www.symantec.com,

February 2004.

Symantec Corporation. SOX compliance: Understandiogv security, systems and
storage management solutions help meet the corporate defoanSOX compliance.

www.symantec.com, January 2005.

G. Di Crescenzo, N. Ferguson, R. Impagliazzo, and MobBakon. How to forget a secret. In
Proceedings of the Sympaosium on Theoretical Aspects of @emPciencevolume 1563,

pages 500-509. Springer-Verlag, 1999. Lecture Notes ingliben Science.

G. Di Crescenzo, R. Graveman, R. Ge, and G. Arce. Apprnak message authentication

115

and biometric entity authentication. FProceedings of Financial Cryptography and Data

Security February-March 2005.

[32] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and lLiGioWide-area cooperative storage
with CFS. InProceedings of the ACM Symposium on Operating Systemsies¢SOSRP)

pages 202-215, October 2001.

[33] DataMirror. Achieving Sarbanes-Oxley compliancetwigal-time data integration, protec-

tion and monitoring. www.datamirror.com, September 2003.

[34] Deloitte and LLP Touche. Leveraging internal contmbuild a better business: A response

to Sarbanes-Oxley sections 302 and 404. www.deloitte.&gril 2003.

[35] V. Dadis and J. An. Concealment and its applicationstthenticated encryption. 1Ad-
vances in Cryptology — Eurocrypt’03 Proceeding®lume 2656, 2003. Lecture Notes in

Computer Science.

[36] R. Dowdeswell and J. loannidis. The CryptoGraphic disker. In Proceedings of the

USENIX Technical Conference, FREENIX Tragliges 179-186, June 2003.

[37] EMC Corporation.EMC TimeFinder Product Description Guid®998.

[38] P. Cedergvistet. al Version Management with CYSNetwork Theory Limited, 2003.

http://www.network-theory.co.uk/cvs/manuall/.

[39] D. Farmer and W. Venemdorensic Discovery Addison-Wesley, 2004.

[40] K. Fu, M. F. Kasshoek, and D. Maziéeres. Fast and secistalilited read-only file system.

ACM Transactions on Computer Syste2®(1):1-24, 2002.

116

[41] S. L. Garfinkel and A. Shelat. Remembrance of data passestudy of disk sanitation

practices.|[EEE Security and Privagyl(1):17-27, 2003.

[42] D.K. Gifford, R. M. Needham, and M. D. Schroeder. The @dile systemCommunications

of the ACM 31(3):288-298, March 1988.

[43] R. J. Green, A. C. Baird, and J. Christopher. Designirigss on-line backup system for a

log-structured file systenDigital Technical Journal 8(2):32—45, 1996.

[44] D. Grune, B. Berliner, and J. Polk. Concurrent vergigni system (CVS).

http://www.cvshome.org/, 2003.

[45] P. Gutmann. Secure deletion of data from magnetic alid-state memory. IrProceedings

of the USENIX Security Symposiupages 77-90, July 1996.

[46] P. Gutmann. Software generation of practically streemgdom numbers. |IRroceedings of

the USENIX Security Symposiupages 243—-257, January 1998.

[47] P. Gutmann. Data remanence in semiconductor devicesPrdceedings of the USENIX

Security Symposiynpages 39-54, August 2001.

[48] J. Hagerty. Sarbanes-Oxley compliance spending wideed $5b in 2004AMR Research

Outlook December 2004.

[49] R. Hagman. Reimplementing the Cedar file system usiggity and group commit. In
Proceedings of the ACM Symposium on Operating systemsigleaqdSOSP)pages 155—

162, 1987.

117

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

E. Haubert, J. Tucek, L. Brumbaugh, and W. Yurcik. Tammsistant storage techniques for
multimedia systems. IS&T/SPIE Symposium Electronic Imaging Storage and Rettie

Methods and Applications for Multimedia (El12pages 30-40, January 2005.

Hitachi, Ltd. Hitachi Shadowlmagelune 2001.

D. Hitz, J. Lau, and M. Malcom. File system design for aRSNfile server appliance. In

Proceedings of the Winter USENIX Technical Conferepages 235-246, January 1994.

J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, Matganarayanan, R. N. Side-
botham, and M. J. West. Scale and performance in a distdileesystem.ACM Transac-

tions on Computer Systen{1):51-81, February 1988.

N. C. Hutchinson, S. Manley, M. Federwisch, G. Harris, Bitz, S. Kleiman, and
S. O'Malley. Logical vs. physical file system backup. Rroceedings of the USENIX Sym-
posium on Operating System Design and Implementation (DB&yes 239-250, February

1999.

Kahn Consulting Inc. The Sarbanes-Oxley Act: Underdilag the implications for informa-

tion and records management. www.KahnConsultinglnc.com.

Kahn Consulting Inc. An evaluation of the Sun Microgyss, INcSTOREEDGEompliance

archiving system. www.KahnConsultinglnc.com, Januai9320

M. Jakobsson, J. Stern, and M. Yung. Scramble all. Brtcggnall. InFast Software Encryp-

tion, volume 1636, 1999. Lecture Notes in Computer Science.

118

[58] J. E. Johnson and W. A. Laing. Overview of the Spiralog &stem. Digital Technical

Journal 6(1):51-81, 1996.

[59] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and~i{. Plutus: Scalable secure file
sharing on untrusted storage.Rroceedings of the USENIX Conference on File and Storage

Technologies (FASTpages 29-42, March 2003.

[60] P. Killbridge. The cost of HIPAA compliance. New England Journal of Medicine

348(15):1423-1424, 2003.

[61] S.R. Kleiman. Vnodes: An architecture for multiple fégstem in SUN UNIX. InProceed-

ings of the Summer USENIX Technical Conferepegies 238—-247, 1986.

[62] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P.t&ig D. Geels, R. Gummandi,
S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhaeafgtore: An architecture
for global-scale persistent storage. Rroceedings of the ACM Conference on Architecture
Support for Programming Languages and Operating Syster8&I®S) pages 190-201,

November 2000.

[63] L. Lamport. Password authentication with insecure camication. Communications of the

ACM, 24(11):770-772, 1981.

[64] M. Luby and C. Rackoff. How to construct pseudorandommpseations from pseudorandom

functions. SIAM Journal on Computind.7(2):373-386, April 1988.

[65] J .P. Lucci. Enron—the bankruptcy heard around thedvand the international ricochet of

Sarbanes-Oxley. 67 Alb. L. Rev. 211, 2003.

119

[66] J. P. MacDonald, P. N. Hilfinger, and L. Semenzato. PRI project revision control sys-
tem. InProceedings of System Configuration Managemesitime 1439. Springer-Verlag,

July 1998. Lecture Notes in Computer Science.

[67] J. R. Macey. Pox on both your houses: Enron, Sarbanésy@rd the debate concerning the

relative efficacy of mandatory versus enabling rules. 81RMasL.Q. 329, 333, 2003.

[68] P. Maniatis and M. Baker. Enabling the archival storafigigned documents. IRroceedings
of the USENIX Conference on File and Storage TechnologigSTlF pages 31-46, January

2002.

[69] K. McCoy. VMS File System Internal®igital Press, 1990.

[70] M. K. McKusick. Running “fsck” in the background. IRroceedings of the BSDCon 2002

Conferencepages 55-64, February 2002.

[71] M. K. McKusick, K. Bostic, M. J. Karels, and J. S. Quartean. The Design and Implemen-

tation of the 4.4BSD Operating SysteAddison Wesley, 1996.

[72] M. K. McKusick and G. Ganger. Soft updates: A technigoiedliminating most synchronous
writes in the fast filesystem. IRroceedings of the USENIX Technical Conference, FREENIX

Track pages 1-17, June 1999.

[73] M. K. McKusick, W. N. Joy, J. Leffler, and R. S. Fabry. A tdide system forunix. ACM

Transactions on Computer Syster®€3):181-197, August 1984.

[74] S. Micali. Efficient certificate revocation. TechnicBReport MIT/LCS/TM-542b, Mas-

sachusetts Institute of Technology, 1996.

120

[75] Sun Microsystems. NFS: Network file system protocol specificatioetwork Working

Group, Request for Comments (RFC 1094), March 1989. Vetion

[76] J. Monroe. Emerging solutions for content storage seméation at PlanetStorage, 2004.

[77] J. Morris. The Linux kernel cryptographic ARLinux Journal (108), April 2003.

[78] J. H. Morris, M. Satyanarayanan, M. H. Conner, J. H. Haly®. S. H. Rosenthal, and F. D.
Smith. Andrew: A distributed personal computing enviromtieCommunications of the

ACM, 29(3):184-201, March 1986.

[79] L. Moses. Anintroductory guide to TOPS-20. Technicap@rt TM-82-22, USC/Information

Sciences Institute, 1982.

[80] K.-K. Muniswamy-Reddy, C. P. Wright, A. Himmer, and Eadok. A versatile and user-
oriented versioning file system. Proceedings of the USENIX Conference on File and Stor-

age Technologies (FASTHages 115-128, March 2004.

[81] A. Muthitacharoen, B. Chen, and D. Mazieres. A low-baitth network file system. In
Proceedings of the ACM Symposium on Operating Systemsifles¢SOSR)pages 174—

187, October 2001.

[82] M. Naor and M. Yung. Universal one-way hash functionsl &meir cryptographic applica-
tions. InProceedings of the ACM Symposium on Theory of Compupages 33—-43, May

1989.

[83] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The designraplementation of Zap: A

121

system for migrating computing environments.Aroceedings of the USENIX ymposium on

Operating Systems Design and Implementation (OSi2lges 361-376, 2002.

[84] S. Patil, A. Kashyap, G. Sivathanu, and E. ZadékS: An in-kernel integrity checker and in-
trusion detection file system. Proceedings of the Large Installation System Adminigirati

Conference (LISApages 67-78, November 2004.

[85] H.Patterson, S. Manley, M. Federwisch, D. Hitz, S. Klan, and S. Owara. SnapMirror: File
system based asynchronous mirroring for disaster recoveryroceedings of the USENIX

Conference on File and Storage Technologies (FABdges 117-129, January 2002.

[86] Z. Peterson and R. Burns. Ext3cow: A time-shifting fijfestem for regulatory compliance.

ACM Transactions on Storag#(2):190-212, 2005.

[87] Z. N. J. Peterson, R. Burns, J. Herring, A. Stubblefieldgd A. Rubin. Secure deletion for
a versioning file system. IRroceedings of the USENIX Conference on File And Storage

Technologies (FASTpages 143—-154, December 2005.

[88] Z.N.J.Peterson, R. Burns, and A. Stubblefield. Lingtiiability in a federally compliant file
system. InProceedings of the PORTIA Workshop on Sensitive Data inddedtinancial,

and Content Distribution Systemkily 2004.

[89] D. Presotto. Plan 9. IProceedings of the Workshop on Micro-kernels and Other &ern

Architectures pages 31-38, April 1992.

[90] S. Quinlan. A cached worm file systerSoftware — Practice and Experiencl(12):1289—

1299, December 1991.

122

[91] S. Quinlan and S. Dorward. Venti: A new approach to arglstorage. IrProceedings of the

USENIX Conference on File And Storage Technologies (FAfges 89-101, January 2002.

[92] S. Ranade. The time traveling file manager: Interfacggieand semantics. Technical report,

The Johns Hopkins University, 2005.

[93] KCI Research. New information management rules neddeaudit, investigations, and

litigation. www.KahnConsultinglnc.com, September 2004.

[94] R. L. Rivest. All-or-nothing encryption and the packagansform. InProceedings of the
Fast Software Encryption Conferena®lume 1267, pages 210-218, 1997. Lecture Notes in

Computer Science.

[95] M. J. Rochkind. The source code control systéBEEE Transactions on Software Engineer-

ing, 1(4):364-370, December 1975.

[96] P. Rogaway, M. Bellare, J. Black, and T. Krovet. OCB: AdR-cipher mode of operation for
efficient authenticated encryption. Rroceedings of the ACM Conference on Computer and

Communications Securitpages 196—-205, November 2001.

[97] D. Roselli and T. E. Anderson. Characteristics of filsteyn workloads. Research report,

University of California, Berkeley, June 1996.

[98] M. Rosenblum and J. K. Ousterhout. The design and imefgaiion of a log-structured file

system.ACM Transactions on Computer Syster3(1):26-52, February 1992.

[99] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and Barl.yDesign and implementation

123

of the Sun network file system. Proceedings of the Summer USENIX Technical Conference

pages 119-130, June 1985.

[100] D.J. Santry, M. J. Feeley, N. C Hutchinson, and A. Ctdlei Elephant: The file system that

never forgets. Iorkshop on Hot Topics in Operating Systepeges 2—7, 1999.

[101] D.J. Santry, M. J. Feeley, N. C. Hutchinson, A. C. lejtR. W. Carton, and J. Ofir. Deciding
when to forget in the Elephant file system.Rroceedings of ACM Symposium on Operating

Systems Principles (SOSPpges 110-123, December 1999.

[102] B. Schneier and J. Kelsey. Secure audit logs to sugmonputer forensicsACM Transac-

tions on Information Systems Securi2¢2):159-176, 1999.

[103] M. Scholl, R. Kissel, S. Skolochenko, and X. Li. Guidek for media sanitization. NIST

Special Publication 800-88, February 2006.

[104] M. D. Schroeder, D. K. Gifford, and R. M. Needham. A cachfile system for a program-
mer’s workstation. IProceedings of the ACM Symposium on Operating Systemsifitesc

(SOSP)pages 25-34, 1985.

[105] M. Seltzer, K. Bostic, M. K. McKusick, and Carl StaelinAn implementation of a log-

structured file system farNix. In Proceedings of the Winter USENIX Technical Conference

[106] A. Shamir. How to share a secr&@ommunications of the ACN22(11):612-613, 1979.

[107] J. S. Shapiro and J. Vanderburgh. CPCMS: A configunati@nagement system based on
cryptographic names. Rroceedings of the USENIX Technical Conference, FREENAZKTT

pages 203-216, 2002.

124

[108] M. Sivathanu, L. Bairavasundatam, A. C. Arpaci-Desgsaand R. H. Arpaci-Dusseau. Life
or Death at Block-Level. IiProceedings of the USENIX Symposium on Operating Systems

Design and Implementation (OSDpages 379-394, December 2004.

[109] K. A. Smith and M. I. Seltzer. File system aging — Inaieg the relevance of file system
benchmarks. IiProceedings of the ACM SIGMETRICS Conferenmamges 203-213, June

1997.

[110] Richard T. Snodgrass, editdrhe TSQL2 Temporal Query Languadduwer, 1995.

[111] C. A. N. Soules, G. R. Goodson, J. D. Strunk, and G. R.géan Metadata efficiency in
versioning file systems. IRroceedings of the USENIX Conference on File and Storage

Technologies (FASTpages 43-58, March 2003.

[112] J. D. Strunk, M. L. Scheinholtz G. R. Goodson, C. A. Nulgs, and G. R. Ganger. Self-
securing storage: Protecting data in compromised systémBroceedings of the USENIX
Symposium on Operating Systems Design and Implement&®bDI} pages 165-180, Oc-

tober 2000.

[113] A. Stubblefield, J. loannidis, and A. D. Rubin. Using fluhrer, Mantin, and Shamir attack
to break WEP. IrProceedings of the Network and Distributed Systems Sgdyinposium

pages 17-22, February 2002.

[114] A. S. Tannenbaum.Operating Systems: Design and Implementatid®rentice-Hall Inc.,

Englewood Cliffs, NJ 07632, 1987.

[115] W. F. Tichy. RCS: A system for version controlSoftware — Practice and Experience

15(7):637—654, July 1985.

125

[116] T.Y.Ts'oand S. Tweedie. Planned extensions to thenk ext2/ext3 filesystem. IRroceed-

ings of the USENIX Technical Conference, FREENIX Trpekjes 235-243, June 2002.

[117] J. Viega and G. McGravBuilding Secure SoftwareAddison-Wesley, 2002.

[118] M. Waldman, A. D. Rubin, and L. F. Cranor. Publius: Aush tamper-evident, censorship-
resistant, Web publishing system. Pnoceedings of the USENIX Security Symposipages

59-72, August 2000.

[119] X. Wang, Y. L. Yin, and H. Yu. Finding collisions in thellf SHA-1. In Advances in Cryp-
tology - Crypto’05 ProceedingsSpringer-Verlag, August 2005. Lecture Notes in Computer

Science. To appeatr.

[120] H. Weatherspoon, C. Wells, and J. Kubiatowicz. Narang integrity: Self-verifying data
in peer-to-peer systems. Rroceedings of the Workshop on Future Directions in Distil

Computing pages 142-147, June 2002.

[121] C. Wright, J. Dave, and E. Zadok. Cryptographic filetsgss performance: What you don't
know can hurt you. IfProceedings of the IEEE Security in Storage Workshop (S1B&des

47-61, October 2003.

[122] C. P. Wright, M. Martino, and E. Zadok. NCryptfs: A seewand convenient cryptographic

file system. InProceedings of the USENIX Technical Conferepames 197-210, June 2003.

[123] E. Zadok and I. Badulescu. A stackable file systenriate for Linux. InLinuxExpo Con-

ference Proceedingpages 141-151, May 1999.

126

[124] E. Zadok and J. Nieh. FiST: A language for stackabledylstems. IrProceedings of the

USENIX Technical Conferencpages 55—70, June 2000.

[125] J-G. Zhu, Y. Luo, and J. Ding. Magnetic force microsgapudy of edge overwrite charac-

teristics in thin film medialEEE Transaction on Magnetic80(6):4242—-4244, 1994,

127

Vita

Zachary Nathaniel Joseph Peterson was born February 1&,id9%ron, Ohio.
At the age of four, his family moved to Escondido, Californihere he completed his
basic and high school education. In 1996, he began attetidkngniversity of California
at Santa Cruz. He graduated four years later with a Bachél&cignce in Computer
Engineering with liberal arts emphasis in music. He stayedtdanta Cruz to complete a
Master of Science in Computer Science under the guidancebfParrell Long. The title
of his Master’s thesis waBata Placement for Copy-on-Write Using Virtual Contiguity
In 2002, Zachary matriculated at The Johns Hopkins UnityergVhile there, he earned a
Masters of Science in Security Informatics from the Johnpkitts Institute for Security
Informatics under the advisement of Avi Rubin. He succdlstiefended his dissertation
in October of 2006, completing the requirements for a DootdPhilosophy in Computer

Science. His adviser was Randal Burns.

128

