
TOWARDS REGULATORY COMPLIANT

STORAGE SYSTEMS

by

Zachary Nathaniel Joseph Peterson

A dissertation submitted to The Johns Hopkins University inconformity with the requirements for

the degree of Doctor of Philosophy.

Baltimore, Maryland

October, 2006

c© Zachary Nathaniel Joseph Peterson 2006

All rights reserved

Abstract

Legislators have begun to recognize the importance of how electronically stored

data should be maintained and secured. Similarly, the courts have begun to differentiate

electronic data from their paper analogs. Examples of some sweeping electronic record

management legislation include: the Health Insurance Portability and Accountability Act

(HIPAA) of 1996, the Gramm-Leach-Bliley Act (GLBA) of 1999,and the more recent

Federal Information Security Management Act (FISMA) and Sarbanes-Oxley Act (SOX)

of 2002. Altogether, there exist over 4,000 acts and regulations that govern digital storage,

all with a varying range of requirements for maintaining electronic records.

Many current storage solutions fail to meet the new demands legislation placed

on storage systems. Systems must now provide confidentiality through encrypted storage

and data transmission. Some legislation requires an auditable trail of changes made to elec-

tronic records that are accessible in real-time. This implies versioning files and providing

a means of quickly retrieving versions from any point in time. Other legislation sets limits

on the amount of time an organization may be liable for maintaining their electronic data,

but for those data that go out of scope, permanently deletingdata from magnetic media

ii

can be challenging. Because electronic data is dynamic, andtherefore easily malleable on

disk, new methods for authentication and non-repudiation need to be developed to ensure

a binding of an individual to an auditable trail of data changes. Further, these systems

must be robust against both external and internal attacks. Adata loss or compromise due

to negligence may result in an organization falling out of compliance and susceptible to

litigation.

We present three technical contributions to the field of regulatory compliant stor-

age. The first is an open-source versioning file system designed to be a platform for de-

veloping regulatory compliant storage technologies. We then introduce algorithms and an

architecture for the secure deletion of individual versions of a file. Lastly, we construct an

audit trail model for a versioning file system so that the changes made to data, and the order

in which they occurred, may be verifiable.

Advisor: Randal Burns
Readers: Randal Burns

Avi Rubin
Darrell Long

iii

Acknowledgements

This dissertation is the culmination of six years of graduate school at two univer-

sities, on two different coasts, completed only with the support of many people. First and

foremost, I deeply thank my adviser and good friend, Randal Burns, without whom this

work, let alone any successes I’ve had as a scientist, would not have been possible. His

support proved unwavering and his guidance unfaltering. Throughout our years of working

together, Randal has been more akin to a brother than a boss; just as quick to come to my

aid as to critique my mistakes. This was truly a unique relationship; one of family, rather

than contract. I look forward to being his new peer and continued friend.

In addition to Randal, I was extremely fortunate to be exposed to a faculty of ex-

ceeding talent and energy. I had the distinct pleasure of working closely with two faculty

members, Avi Rubin and Giuseppe Ateniese, both of whom provided me unique opportu-

nities for expanding my research horizons. I am grateful to them both. Of all the faculty,

however, Andreas Terzis was an uncommon counselor. Whetherit be exchanging new

ideas at the gym or pondering life in front of the Xbox, Andreas was always willing to lend

a sympathetic ear and a critical mind. Thank you.

iv

Research is rarely a solo endeavor and throughout my career at Hopkins I was

priveleged to be able to work with a set of excellent peers. Mycolleagues in the Hopkins

Storage Systems Lab: Alexandros Batsakis, Chuck Wu, Dan Wang, Eric Perlman and Tanu

Malik, spent many hours of peer review to benefit me and my work, and for that, I am

indebted. Of particular distinction, Alexandros showed methat it’s possible to achieve the

rare combination of cool and computer science. Outside of the HSSL, Adam Stubblefield,

Joe Herring and Steve Bono provided significant insight intothe worlds of cryptography

and system design; the foundations of this work.

Special thanks go to Scott Banachowski, who has housed me on conference trips,

reviewed my workad nauseam, shared his love of music with me, and has consistently

been a model of the scientist I aspire to be.

My parents have always been, and continue to be, the cornerstone of my endeav-

ors. They have made everything possible. I hope to finally be able to provide them with the

top-notch technical support they deserve. And to my brother, Andrew, who has shown me

compassion, at all hours, and above all else.

And lastly, I dedicate this work to Jamie Funderburk, who wasable to make her

love and support known to me both at home and abroad. Her contributions to my life are

without measure and will never be forgotten.

v

Contents

Abstract ii

Acknowledgements iv

List of Tables ix

List of Figures x

1 Legislating Storage Systems 1
1.1 Health Insurance Portability and Accountability Act 3

1.1.1 Privacy Rule . 3
1.1.2 Security Rule . 4

1.2 Sarbanes-Oxley Act 4
1.2.1 Section 302 . 5
1.2.2 Section 404 . 5
1.2.3 Section 409 . 6
1.2.4 Section 802 . 6

1.3 Gramm-Leach-Bliley Act 6
1.3.1 Financial Privacy Rule .. . 7
1.3.2 Safeguards Rule . 7
1.3.3 Pretexting Protection 7

1.4 Federal Information Security Management Act 8
1.5 SEC Rule 17 CFR§ 240.17a-4 . 8
1.6 The Court and Electronic Records 9
1.7 Distilling the Requirements 9

1.7.1 Versioning with Real-Time Access 10
1.7.2 Secure Deletion .11
1.7.3 Digital Privacy .11
1.7.4 Digital Authenticity .. . 12

1.8 Contributions .. . 13

vi

2 Ext3cow: A Time-Shifting File System for Regulatory Compliance 14
2.1 Introduction .. . 15
2.2 Related Work .18
2.3 Time-shifting .. . 21
2.4 Metadata Design .. 24

2.4.1 Superblock . 24
2.4.2 Inodes . 25
2.4.3 Directory Entries and Naming 26

2.5 Version Scoping .. . 27
2.5.1 Scoping Inodes . 28
2.5.2 Scoping Directory Entries 28
2.5.3 Temporal Vnodes . 30

2.6 Versioning with Copy-on-Write 31
2.6.1 Memory Management . 33
2.6.2 Copy-on-write State bitmaps 34

2.7 Performance Evaluation 35
2.7.1 Micro-benchmarks .37
2.7.2 Bonnie++ . 41
2.7.3 Trace-driven Experiments 42

2.8 Availability .. . 43

3 Secure Deletion for a Federally Compliant Storage System 45
3.1 Introduction .. . 46
3.2 Related Work .48
3.3 Secure Deletion with Versions 51

3.3.1 AON Secure Deletion . 52
3.3.2 Secure Deletion Based on Randomized Keys 56
3.3.3 Other Secure Deletion Models 57
3.3.4 Security Properties .. . 60

3.4 Architecture .. . 61
3.4.1 Metadata for Secure Deletion 61
3.4.2 The Secure Block Device Driver 63
3.4.3 Security Policies .. 64

3.5 Experimental Results 65
3.5.1 Time to Delete . 65
3.5.2 Bonnie++ . 67
3.5.3 Trace-Driven Experiments 70

3.6 Applicability to Other Data Systems 73

4 Verfiable Audit Trials for a
Federally Compliant Storage System 74
4.1 Introduction .. . 74
4.2 Related Work .77
4.3 Secure Digital Audits 78
4.4 A Secure Version History 81

vii

4.4.1 Incrementally Calculable MACs 83
4.4.2 File System Independence .. . 85
4.4.3 Hierarchies and File Systems 86

4.5 File System Implementation 89
4.5.1 Metadata for Authentication 90
4.5.2 Key Management . 92

4.6 Experimental Results 92
4.6.1 Micro-benchmarks .93
4.6.2 Aggregate Performance .. 95
4.6.3 Requirements for Auditing 101

4.7 Future Work .102
4.7.1 Alternative Authentication Models 102
4.7.2 Availability and Security 104

5 Conclusions 106
5.1 Summary of Contributions 107

A The AMAC Construct 109

Bibliography 112

Vita 128

viii

List of Tables

2.1 Feature comparison of versioning file systems. 20
2.2 Results from the “basic” tests of the Connectathon benchmark suite. 35
2.3 The total number of allocated inodes and the number of those inodes allocated for

directories for the ext3 and ext3cow file systems over various snapshot frequencies. 42

4.1 The trace-driven throughput of no authentication, PMAC-SHA1, and HMAC-SHA1. 96
4.2 The number of seconds required to audit all files and files with two or more version

in an entire file system using HMAC-SHA1 and PMAC-SHA1. 99

ix

List of Figures

2.1 Creating snapshots and accessing data in the past in ext3cow. 21
2.2 Creating distinguished (named) snapshots in ext3cow. 23
2.3 Both on-disk and in-memory inodes were retrofitted to support snapshot and copy-

on-write by adding three fields: an inode epoch number, a copy-on-write bitmap,
and field pointing to the next inode in the version chain. 25

2.4 An example of names scoping to inodes over time. 28
2.5 Accessing a path...B@12/C... in ext3cow. Directory entries are shown with birth

and death epochs. Inodes (circles) are show with the epoch inwhich the inode was
created. Inode numbers are not shown. Black directory entries and inodes indicate
the access path according to scoping rules. The inode chain is traversed until an
inode with creation epoch prior to the epoch of the parent inode is found. Tempo-
ral vnodes, in-memory copies of inodes, make this process accurate by preserving
epoch information along access paths. 31

2.6 An example of copy-on-write. The version from epoch2 updates logical blockL1

into L′1. Ext3cow allocates a new physical (disk) blockP6 to record the difference.
All other blocks are shared. 32

2.7 Results from the “basic” tests in the Connectathon benchmark suite. All data are
shown with 95% confidence intervals. 36

2.8 The time to open 150 versions of a file. 40
2.9 Results from the Bonnie++ file system benchmark. 41

3.1 Authenticated encryption and secure deletion for a single data block in a versioning
file system using the all-or-nothing scheme. 53

3.2 Authenticated encryption and secure deletion for a single data block in a versioning
file system using the random-key scheme. 56

3.3 Metadata architecture to support stubs. 62
3.4 The time to securely delete files for the secure overwriting (traditional), all-or-

nothing, and random-key techniques. 66
3.5 Bonnie++ throughput and CPU utilization results. 68
3.6 Results of trace-driven file system aging experiments. 71

4.1 Updating directory version authenticators when fileU is deleted. 88

x

4.2 Metadata architecture to support version authenticators. 91
4.3 Results of micro-benchmarks measuring the CPU and disk throughput. 94
4.4 Characterization of write I/Os from trace-driven experiments. 98
4.5 Aggregate auditing performance results for PMAC-SHA1 and HMAC-SHA1. . . . 100
4.6 Size of authentication data from four months of traced workloads at three snapshot

intervals. 101
4.7 Alternative models for digital auditing. 103

xi

Chapter 1

Legislating Storage Systems

“Good laws have their origins in bad morals.”
– Ambrosius Macrobius

The introduction of computers to the workplace has resulted in a record management paradigm

shift. Paper records have made way for their electronic counterparts, allowing information

to be quickly indexed and shared as well as improving accuracy. However, the rapid adoption of

electronic records is not all good news; with new technologycome new threats. Duplicates of

records can be made and transmitted anywhere instantaneously, threatening privacy. Electronic data

is also easily malleable, making undetectable forgery and falsification a simple task. Legislators and

the courts have begun to recognize the importance of how electronic records need to be maintained

and secured. The result is an ever increasing body of electronic record management

Recent federal, state and local legislation have created new requirements for how to re-

tain and access electronic information. There currently exist over 4,000 acts and regulations that

govern digital storage, all with a varying degree of requirements for maintaining electronic records.

Examples include the Health Insurance Portability and Accountability Act (HIPAA) of 1996, the

1

Gramm-Leach-Bliley Act (GLBA) of 1999, and the more recent Federal Information Security Man-

agement Act (FISMA) and Sarbanes-Oxley Act (SOX) of 2002.

The legislation does not mandate specific technologies, noris it made obvious how a

storage system should technically meet all of the requirements. Despite this confusion, storage

systems vendors have quickly identified the large market opportunity and have modified existing

systems and marketed them as compliance products. In 2004, Sarbanes-Oxley compliance alone

represented a market of over $5 billion [48]. Mostly, vendors add policy enhancements to existing

storage platforms that aid in the maintenance and retentionof data, such as forbidding data dele-

tion. However, many of these products fail to meet the true demands legislation places on storage

systems [34,55,93]. They have been unable to combine the data retention, privacy and authenticity

requirements into a single system. In this dissertation, wepresent some completed technical con-

tributions to the field of regulatory compliant storage pursuant to this goal. We have implemented

these solutions, and made them available for public use.

We begin this chapter by detailing some of the federal laws and regulations that affect

computer storage system architectures. We distill the legislation into a set of four technological

requirements. We conclude that compliance requires: versioning with real-time access to past

versions, secure deletion, digital privacy and digital authenticity. By no means is our analysis of

legislation exhaustive, but it does demonstrate the breadth and spirit of the legislated requirements,

illustrate the similarities between the laws, and motivatethe need for better technological solutions.

2

1.1 Health Insurance Portability and Accountability Act

The Health Insurance Portability and Accountability Act (HIPAA) [22], enacted in 1996,

was written to develop standards for the normalization of individual health records and to encourage

the use of electronic records pursuant to these goals. HIPAArequires “covered entities,” including

doctors, hospitals, insurance, billing and clearing housecompanies, to adhere to a set of resolutions

designed to standardize electronic health care transmissions and protect the privacy and security of

individually identifiable health information. As it relates to technology, HIPAA includes provisions

that address the security and privacy of “protected health information” (PHI); specifically, two Ad-

ministrative Simplification provisions, the Privacy Rule and the Security Rule. Both rules affect the

way electronic records must be accessed, transmitted, and managed.

1.1.1 Privacy Rule

The HIPAAStandards for Privacy of Individually Identifiable Health Information, or Pri-

vacy Rule [23], is the first comprehensive set of Federal protection standards for the privacy of

personal health information. The Rule addresses the use anddisclosure of individuals’ PHI by cov-

ered entities. The Rule attempts to strike a balance betweenthe highest protection of privacy for

individuals with the needs for smoothly flowing health care information. Additionally, The Rule

attempts to be flexible enough to cover the large variety and sizes of health care providers. The

Rule’s key requirements includeaccess controlanderror correctionprocedures, allowing an indi-

vidual to manage how their personal information will be used, including limiting the marketing of

their PHI. The Privacy Rule also requires a covered entity todocument all of its privacy procedures

and designate a privacy officer to implement the procedures and train staff.

3

1.1.2 Security Rule

The HIPAA Security rule acts as a complement to the Privacy Rule, providing guidance

for interpreting the physical and technical safeguards required by the Privacy Rule. The Security

Rule, however, only protects Electronic Protected Health Information (EPHI) and does not cover

paper copies of documents or oral information. The Rule defines three segments of security safe-

guards for compliance: administrative, physical, and technical. Generally, The Rule requires a

covered entity to ensure theconfidentiality, integrity andavailability of all EPHI that is created,

received, maintained or transmitted by a covered entity. The entity must protect against reasonable

threats and hazards, as well as protect against any reasonably anticipated misuse or unauthorized

disclosure.

1.2 Sarbanes-Oxley Act

The Sarbanes-Oxley Act of 2002 (SOX) [21] is legislation enacted in response to the high-

profile Enron and WorldCom financial scandals [65,67]. Its grand scale and sweeping implications

have made it the subject of much independent research [29,33,34,55]. In its own words, SOX was

designed to “protect investors by improving the accuracy and reliability of corporate disclosures

made pursuant to the securities laws and for other purposes.” SOX is administered by the Securities

and Exchange Commission (SEC), charged to publish rules andset deadlines for compliance. The

Act does little to set business practices, nor does it specify how a business should store its financial

records, leaving many businesses in the dark as to which technologies are necessary to become com-

pliant. In this way, SOX affects IT departments as strongly as the financial side of corporations. All

business records, including electronic records and messages, must be retained for “not less than five

4

years.” The records must be storedauthenticallyand be available forreal-time reporting. Conse-

quences for non-compliance are steep fines, imprisonment, or both. This leaves IT departments with

the challenge of creating and implementing controls and procedures in a cost-effective fashion that

satisfy the requirements put forth by the legislation. We identify those sections of Sarbanes-Oxley

that require a technological solution and particularly affect a company’s storage infrastructure.

1.2.1 Section 302

Section 302 centers on the responsibilities of a company’s management with respect to

the electronic records they keep. CFOs and CEOs must personally certify that their financial records

accurately represent the company’s financial condition. Additionally, they certify to an audit com-

mittee or independent auditor that they are responsible forthe proper disclosure controls and proce-

dures, ensuring no deficiencies in control, data manipulation, or acts of fraud are committed in their

financial records.

1.2.2 Section 404

Section 404 mandates an annual evaluation of internal controls for financial reporting. The

report must address the record management procedures and the effectiveness and control structure

of the company’s financial records. In addition, the company’s auditor must issue a report that

attests to the effectiveness of the internal controls and procedures. An auditor must be able to verify

the authenticity of the records to pass the auditing process.

5

1.2.3 Section 409

Section 409 addresses real-time reporting on financial records. The legislation requires

that “[e]ach issuer. . . shall disclose to the public on a rapid and current basis such additional in-

formation concerning material changes in the financial condition or operations of the issuer”. The

results must be “in plain English.”

1.2.4 Section 802

Section 802 requires companies to produce and maintain authentic and immutable records

for at least five years. The types of records are specified by the SEC, and include:

records such as workpapers, documents that form the basis ofan audit or review, mem-
oranda, correspondence, communications, other documents, and records (including
electronic records) which are created, sent, or received inconnection with an audit or
review and contain conclusions, opinions, analysis, or financial data relating to such
an audit or review.

A failure to store the required documents or knowingly altering, destroying or falsification of rele-

vant data may result in fines and up to twenty years of imprisonment. Section 802 applies to both

public and private companies under certain circumstances.

1.3 Gramm-Leach-Bliley Act

The Gramm-Leach-Bliley Act (GLBA) [24], also known as the Financial Services Mod-

ernization Act, increases competition among banks, securities companies and insurance companies

by allowing investment and commercial banks to consolidate. In addition, legislators proposed best

practices in consumer privacy, data and information protection, and securities regulation, maintain-

ing that the privacy of consumer financial information is theprimary concern. Specifically, three

6

sections: the Financial Privacy Rule, the Safeguards Rule,and Pretexting Protection. These rules

govern the collection, disclosure, and protection of consumers nonpublic, personal information and

personally identifiable information.

1.3.1 Financial Privacy Rule

This rule requires privacy notices to be issued by a financialinstitution when creating a

new consumer relationship and annually thereafter or when the privacy policy is modified. The

notice must detail what consumer information is collected,how the information is used, with whom

the information is shared, and, most importantly, how the information is being protected. The

notice must also provide an opt-out option for consumers whodo not wish to share their private

information.

1.3.2 Safeguards Rule

The Safeguards Rule mandates that financial institutions must develop a plan that ad-

dresses the security and protection of clients’ private personal information, including former clients.

The plan must include a strategy for developing and testing their architecture to secure personal in-

formation, as well as establishing a program to update safeguards commensurate with threat levels.

1.3.3 Pretexting Protection

GLBA requires that financial institutions take the necessary precautions to protect clients

from pretexting or “social engineering” attacks. These types of attacks include “phishing” or other

identity thefts that involve the fraudulent use of client information.

7

1.4 Federal Information Security Management Act

The E-Government Act was signed into law in December 2002 with Title III of the act be-

ing the Federal Information Security Management Act, or FISMA [25,28]. FISMA is a replacement

of the Government Information Security Reform Act (GISRA) designed to broaden and strengthen

computer and network security in both the federal government and its contractors. The goals of

FISMA are to: provide a security control framework for electronic information, provide a set of

minimum controls required for federal data, provide a framework for improved oversight, and rec-

ognize that specific hardware and software solution decisions should be left to individual agencies.

Agencies are required to implement yearly risk assessments, tests and evaluations.

1.5 SEC Rule 17 CFR§ 240.17a-4

The Security Exchange Commission (SEC) Rule 17 CFR§ 240.17a-4 makes detailed re-

quirements on electronic record management for brokers andmembers of the exchange [20,56]. The

Rule addresses how and when electronic records should be stored on “electronic storage media.” It

stipulates that the media “[p]reserve the records exclusively in a non-rewritable, non-erasable for-

mat” as well as maintaining the records such that they are “accurately reproduced” and stored in an

“unalterable form.” Further, the storage device must “[v]erfiy automatically the quality and accu-

racy of the storage media recording process.” Section 240.17a-4(f)(2)(ii)(C) makes a timestamping

and serialization requirement intended to “ensure both theaccuracy and accessibility of the records

by indicating the order in which records are stored, therebymaking specific records easier to locate

and authenticating the storage process.” Records must alsobe kept readily available for review at

any time.

8

1.6 The Court and Electronic Records

The rules of the court have also been updated to account for the ephemeral and evolving

nature of electronic data. Previously, courts required litigants to preserve and produce all electronic

records in their “possession, custody, or control” that arerelevant to the proceedings. However,

a KCI Research report [93] states that because electronic evidence is becoming a routine aspect

of litigation, courts are developing rules and requirements that highlight the need for companies

to be vigilant in managing and producing all relevant evidence. The courts are uninterested in

storage formats or media technologies. Data must be accessible, authentic and inexpensive to store

in the context of a lawsuit. Simple backups and business continuity plans are not an acceptable

substitute for dedicated archives that meet the systematicretention, preservation and accessibility

requirements set forth by recent legislation. In one instance, a company was sanctioned by the

court over the reuse of backup tapes containing relevant email messages, even though the company

“did not do so willfully, maliciously, or in bad faith.” In another, Author Anderson was cited for

obstruction of justice in the Enron investigation for poorly managed and unauthentic electronic data

records.

1.7 Distilling the Requirements

All of this legislation makes broad technological requirements of storage systems. How-

ever, many share similar goals, allowing a few technologiesto encompass and satisfy their legislated

mandates. We distill these requirements into four technologies: versioning with real-time access,

secure deletion, digital privacy and digital authenticity.

9

1.7.1 Versioning with Real-Time Access

Legislation requires an auditable trail of changes made to electronic records that are ac-

cessible in real-time. SEC Rule 17 CFR§240.17a-4(f)(2)(ii)(C) mandates that a storage system

“serialize” and “time-date” electronic records. Section 802 of SOX demands that electronic records

be retained immutably; HIPAA and FISMA have similar immutably requirements. These require-

ments imply the need for versioning files over time. Each version must be an immutable record of

how that file looked at a given point in time. Every modification to a file must create a new version

labeled with a time stamp, giving an implicit order to the modifications. Versions of a file must be

chained together, providing a complete modification history of the life of the file over time. In this

way, the system creates a logical relationship between the versions of the file as well as a temporal

relationship between other file versions in the system.

In addition to versioning, the system must provide a means ofquickly retrieving ver-

sions from any point in time. This meets the “real-time access” requirements of SOX Section 409,

SEC Rule 17 CFR§240.17a-4(f)(2)(ii)(D) and 17a-4(f)(3)(i), as well as theHIPAA Security Rule’s

“availability” requirement. Real-time access means having the ability to fetch any version of a file or

directory from any point in time with the same speed as accessing the actively running file system.

The file system must present an uniform interface for accessing past versions as well as providing

a logical view into the past,i.e. being able to visualize previous system hierarchies. This allows an

auditor, for example, to view past file system states as a whole, rather than a disjoint collection of

versions.

10

1.7.2 Secure Deletion

Legislation requires that electronic data records have a limited scope. This includes pro-

tecting former clients’ privacy (GLBA Safeguard Rule), limiting the length of time for which a

company is liable for maintaining accurate financial records (SOX Section 802), and the right of

a patient to redact portions of their medical records (HIPAAPrivacy Rule). Destroying electronic

records is a more challenging problem then destroying paperanalogues. The physical proprieties of

magnetic storage and the design of most file systems allow data to exist even after explicit deletion

commands. Storage systems must usesecure deletiontechniques to meet compliance requirements.

Secure deletion is the act of permanently removing data froma system, either by physically re-

moving the data from the medium, or by making data unreadable. NIST has published a set of

federal guidelines for securely removing data from obsolete forms of storage [103], however, the

recommendations do not address deleting data from a live environment,i.e. securely removing data

from the active file system without affecting other data. Deletion must also be fine grained. By

fine grained, we mean the system must be able to securely delete subsets of a file on an active file

system, as in the redaction of a patient’s medical record.

1.7.3 Digital Privacy

Systems must now provide confidentiality through encryptedstorage and data transmis-

sion. By using encryption, systems may meet the access control requirements of the HIPAA Privacy

Rule. Only those users who possess the proper decryption keys will be able to access data in a mean-

ingful way. Further, an accidental disclosure of encrypteddata does little to threaten the privacy of

patients. Other legislation, including the HIPAA SecurityRule and GLBA Privacy Rule, explicitly

11

require the use encryption in data systems for consumer and patient privacy. FISMA also requires

federal agencies to protect its data from unauthorized disclosure by using encryption commensurate

with the sensitivity of the information.

1.7.4 Digital Authenticity

In addition to encryption, system must also employ authentication to meet legislated re-

quirements. Authentication in a storage system provides three key features: data integrity, user

authenticity, and authentic client-server transactions.The HIPAA Security Rule, Section 802 of

SOX, and SEC Rule 17 CFR§240.17a-4(f)(2)(ii)(B) require a verification of the “accuracy” and

“integrity” of electronic data. Additionally, Section 404of SOX requires that auditors be provided

with proof of the integrity of data. While encryption provides privacy from unauthorized intrusion

and disclosure, it alone cannot guarantee the accuracy or integrity of the data. Without authentica-

tion, there is no way to verify that the results of a decryption are the same as original, unencrypted

data. When combined with a third party, authentication provides a means of committing to a version

of file, with no way to undetectably modify a filea posteriori. Section 302 of SOX results in CFOs

and CEOs having a vested interest in the integrity of their financial records, as they must “certify”

that their financial reports fairly represent the conditionof their company. Authentication provides

a way to bind an individual to their data, making the repudiation of data impossible. Lastly, authen-

tication allows a company to prove to a customer that they arewho they say they are, meeting the

pretexting requirements in the GLBA.

12

1.8 Contributions

In this dissertation we make three contributions to the fieldof regulatory compliance stor-

age technologies. The first is ext3cow, a platform for compliance with the versioning, audtitability

and real-time disclosure requirements of electronic record retention legislation. Ext3cow is a file

system that provides a unique time-shifting interface, permitting a real-time and continuous view

of data in the past. For our second contribution, we add secure deletion to ext3cow, a method of

permanently destroying data stored on magnetic media used to protect user privacy and limit a com-

pany’s liability. Our solution is unique to versioning file systems, providing finer grained deletion

and orders of magnitude better performance over existing techniques. Further, our secure deletion

algorithms provide authenticated encryption, a transformthat keeps data both privateandauthentic.

Lastly, we introduce constructs that create, manage, and verify digital audit trails for versioning file

systems. Using our model, auditors may efficiently verify the contents of a file system, meeting

the authenticity requirements of electronic record legislation, such as Sarbanes-Oxley and Gramm-

Leach-Bliley. By using I/O efficient parallel message authentication codes, sequences of versions

may be easily authenticated and bound to a file system hierarchy, providing a complete authentic

version history of a file system.

13

Chapter 2

Ext3cow: A Time-Shifting File System
for Regulatory Compliance

“Time is an illusion. Lunchtime doubly so.”
–Douglas Adams

Recent legislation makes new requirements of storage systems. The ext3cow file system, built

on the popular ext3 file system, provides an open-source file versioning and snapshot plat-

form for compliance with the versioning and audtitability requirements of electronic record retention

legislation. Ext3cow provides atime-shiftinginterface that permits a real-time and continuous view

of data in the past. Time-shifting does not pollute the file system namespace nor require snapshots

to be mounted as a separate file system. Further, ext3cow is implemented entirely in the file system

space and, therefore, does not modify kernel interfaces or change the operation of other file systems.

Ext3cow takes advantage of the fine-grained control of on-disk and in-memory data available only

to a file system, resulting in minimal degradation of performance and functionality. Experimental

results confirm this hypothesis; ext3cow performs comparably to ext3 on many benchmarks and on

trace-driven experiments.

14

2.1 Introduction

To address the versioning and auditability needs of regulated storage, we have developed

ext3cow, an open-source disk file system based on the third extended file system (ext3). Ext3 [16]

is the Linux default file system based on the Minix file system [114] and influenced by the Fast File

System (FFS) [73]. Ext3 has become robust and reliable, providing reasonable performance and

scalability for many users and workloads [15]. Ext3cow extends the ext3 design by retrofitting the

in-memory and on-disk metadata structures to support lightweight, logical file systems snapshots

and individual file versioning. All files and snapshots are available at all times, and ext3cow offers

a fine-grained user-interface to access individual file and directory versions from snapshots.

Ext3cow differs from other efforts at versioning file systems in its combination of fea-

tures. Ext3cow both (1) encapsulates all versioning function within the on-disk file systems and (2)

provides a fine-grained, interactive, and continuous-timeinterface to file versions and snapshots.

We accomplish this through thetime-shiftinginterface, which allows users and applications to in-

teract directly with the disk file system,i.e. the interface is transparent to kernel components, in

particular, the virtual file system. Other file systems that provide fine-grained access to versions do

so by modifying kernel interfaces [26, 80, 101]. This incurscopying overheads, pollutes the buffer

pool with old data, and complicates installation and management. Other disk file systems provide

coarse-grained access to versions through the creation of namespace tunnels [52] or via mount-

ing separate logical volumes [111, 112]. Some disk file systems provide no interface to versions,

restricting versioning to internal use only [98,105].

In time-shifting, ext3cow introduces an interface to versioning that presents a continuous

view of time. Users or applications specify a file name and anypoint in time, which ext3cow scopes

15

to the appropriate snapshot or file version. The time-shifting interface allows user-space tools to

create snapshots and access versions. Applications may access these tools to coordinate snapshots

with application state. User-space tools are suitable for automation, using software as simple as

cron. Furthermore, snapshots fit well into an information lifecycle management (ILM) framework.

ILM is a policy-based scheme for managing the lifetime of electronic information, including time-

sensitive data migration and consolidation, backups and restoration, disaster recovery, and long-

term archiving. Ext3cow’s time-shifting and controlled versioning facilitates the consistent transfer

of data from ext3cow to other storage systems.

Many of the virtues of ext3cow lie in encapsulating snapshotand versioning entirely

within the on-disk file system. Ext3cow does not change any kernel interfaces and does not modify

the common file object model provided by the virtual file system (VFS) [61]. This makes ext3cow

easy to install in existing systems; it may be loaded as a module to a running kernel and co-exist

with all other Linux file systems. Only an on-disk file system,such as ext3cow, can control data

placement, metadata organization, and I/O. Specifically, ext3cow retains tight control on the ver-

sioning of buffers and pages. Ext3cow does not degrade cacheperformance by insuring the Linux

page cache sees a single copy of file data; old versions of dataexist only on disk. Copies are cre-

ated on-demand when performing I/O to the disk. This is not possible in VFS implementations.

Further, ext3cow’s inode versioning policy maintainsstable inodes, preserving a files inode number

over the lifetime of a file. Because of stable inodes, ext3cowimplicitly supports the Network File

System (NFS [75,99]). NFS file handles are essential to its stateless operation and require the inode

numbers to remain the same over the lifetime of a file handle. Again, this is not possible in VFS

implementations.

16

Lastly, some versioning systems require specialized, and often expensive hardware, mak-

ing these systems unattractive for the consumer. Regulatory compliance places a tremendous fi-

nancial burden on organizations. AMR research estimates the total spending on Sarbanes-Oxley

compliance alone in 2004 to exceed $5 billion [48]. Experience with HIPAA [60] indicates that

the costs of compliance are relatively greater for smaller organizations. This research is a key com-

ponent in reducing the cost of compliance for small organizations. By providing an open-source

system that satisfies the requirements of many electronic record management regulations, ext3cow

will be particularly helpful to non-profits subject to government reporting requirements, small busi-

nesses subject to Sarbanes-Oxley, and small health care providers subject to HIPAA.

We have released ext3cow under the GNU Public License viahttp://www.ext3cow.com.

As of this writing, ext3cow has had over a thousand visitors and hundreds of downloads from over

one hundred different countries. We run a development mailing list to which a number of enthusiasts

have subscribed. The authors have been running ext3cow to store data on their laptops and personal

workstations since June 2003. We have not experienced a system crash or data loss incident in that

period. Ext3cow has appeal beyond the regulatory environment for which it is designed; it has been

adopted as the storage platform for several research projects.

In the remainder of this chapter, we present the details of the time-shifting interface and

describe how file system data structures were retrofitted to support ext3cow’s feature set in a disk file

system. We present benchmarks and trace-driven experiments that show that versioning has a minor

effect on the file system performance. On most micro-benchmarks, ext3cow meets the performance

of ext3.

17

2.2 Related Work

Storage and file systems use data versioning to enhance reliability, availability, and opera-

tional semantics. Versioning techniques include volume and file system snapshot as well as per-file

versioning. A snapshot is a read-only, immutable, and logical image of a collection of data as it

appeared at a single point in time. Point-in-time snapshotsof a file system are useful for consistent

image for backup [19, 42, 49, 53] and for archiving and data mining [91]. File versioning, creating

new logical versions on every disk write or on every open/close session, is used for tamper-resistant

storage [111, 112] and file-oriented recovery from deletion[26, 80, 101]. Both techniques speed

recovery and limit exposure to data losses during file systemfailure [52, 105]. A range of snapshot

implementations exist, both at the logical file system level[42, 53, 54, 91, 101] and the disk storage

level [37,51,54,112].

File system versioning and snapshot have been used to recover from failure. FFS [70,

72, 73] takes snapshots to create a quiescent file system on which to perform on-line file system

integrity checking. Writes that occur during a check are logged to a special snapshot file to which

file system blocks are copy-on-written. FFS does not providean interface to access file snapshots

on-line. WAFL [52] also uses snapshots for recovery. In addition, it provides users a.snapshot

directory for every directory in the file system containing discrete views of the past.

File system snapshots implemented with copy-on-write are an implicit feature of log-

structured file systems. LFS [98, 105] and Spiralog [43, 58] do not overwrite file data as they are

written, but instead write changes as they occur to a circular log. Checkpoints, which serve as

snapshots in log-structured file systems, are used to roll-back a file system to a known consistent

point after a system failure. LFS and Spiralog do not providean interface to access versions.

18

The Andrew file system [53,78], the Episode file system [19], Plan-9 [89,90], and Snap-

Mirror [85] use snapshot with copy-on-write techniques as amethod to perform quick, low-band-

width backups in an on-line fashion. Venti [91] uses hashingand copy-on-write to archive blocks

efficiently. A survey and evaluation of snapshot and backup techniques was performed by Cherve-

naket al. [17] and Azaguryet al. [3].

Cedar [42, 49, 104] is the first example of a file system that maintains versions of a file

over time. Versions are shared among file system users. Each write operation creates a new version

that has a unique name to the file system,e.g./home/user/ext3cow.tex!3 represents the third version.

Each version of a file is autonomous, with no shared data between versions; sharing a file requires

transferring all blocks of a file. Similar approaches were used by VMS [27,69] and TOPS [79].

The Elephant file system [101] is the first file system to include a variety of user-specified

retention policies similar to user-space version control tools such as RCS [95, 115], PRCS [66]

and CVS [38, 44]. Elephant attempts to make intelligent decisions about which versions to keep,

an approach taken by some on-line configuration management tools like CPCMS [107]. Elephant

provides an intuitive, date-oriented interface. It is implemented as a replacement for the BSD VFS

layer and provides versioning to all on-disk file systems that support its interface. Wayback [26]

uses a similar versioning paradigm.

In the Comprehensive Versioning File System (CVFS) [111], all writes to the server, in

a client/server storage system, are versioned, which provides an audit trail for security breaches.

CVFS exists as a complete system, in which versions are accessed by mounting a point-in-time

view of the file system over NFS [75,99].

19

ext3cow CVFS Elephant Wayback WAFL LFS
Disk file system • • •
Preserves interfaces • • N/A1 •
Files system snapshot • • • •
File versioning • • • •
Time-oriented interface • •
Preserves FS namespace • • • •
Stable inodes for NFS • • • •
Open-source license • • •

Table 2.1: Feature comparison of versioning file systems.

To place our contributions in context with respect to recentversioning file system research,

Table 2.1 compares the features of ext3cow to CVFS [111], Elephant [101], Wayback [26], WAFL

[52], and log-structured file systems (LFS) [98, 105]. We restrict this treatment to file systems,

omitting versioning archives [4, 91], because we are concerned with interactive versioning in the

regulatory environment. We also omit VersionFS [80] because it compares similarly to Wayback.

This table punctuates our contribution. Ext3cow provides the benefits of fine-grained versioning

with interactive, real time access to versions, without manipulating kernel interfaces. Table 2.1

also indicates that log-structured file systems provide an attractive alternative; ext3cow’s features

could be achieved by adding the time-shifting interface to an LFS. However, one of our principal

goals in building ext3cow for the regulatory environment issecure deletion (Chapter 3), which

obviates the use of the log-structured layout. The write policy of LFS spreads data from a single

file throughout the log. The efficiency of our secure deletionarchitecture (Chapter 3 [87, 88] relies

on the file system clustering data and metadata (indirect blocks) so that a small amount of secure

overwriting [45] securely deletes a large amount of data.

1WAFL is implemented as a file-system appliance within a custom operating system.

20

[user@machine] echo "This is the original foo.txt" > foo.txt

[user@machine] snapshot

Snapshot on . 1057845484

[user@machine] echo "This is the new foo.txt." > foo.txt

[user@machine] cat foo@1057845484

This is the original foo.txt.

[user@machine] cat foo

This is the new foo.txt.

Figure 2.1: Creating snapshots and accessing data in the past in ext3cow.

2.3 Time-shifting

Our goals in creating an interface to data versioning include offering rich semantics, mak-

ing it congruent with operating system kernel interfaces, and providing access to all versions from

within the file system. Semantically rich means that the way in which data are accessed provides

insight into the age of the data. In the time-shifting principle, date and time information are embed-

ded into the access path. The interface allows a user to fetchany file or directory from any point in

time and to navigate the file system in the past.

Previous interfaces fail to fulfill our requirements for versioning in the regulatory envi-

ronment. Some require old data to be accessed through a separate mount point [37,111,112], which

prevents browsing in the existing file namespace to locate objects and then shifting those objects

into the past. Others use arbitrary version numbers to access old data [27,42,49,69,79],e.g.access

the file four versions back. These interfaces make sense for daily snapshots, but do not generalize

to file versioning or more frequent snapshots. WAFL [52] usesnamespace tunnels from the present

to the past, that accesses the snapshot version of the current directory. While this permits browsing

for files in the present and then shifting those files to the past, it does not handle multiple versions

gracefully.

21

We describe the operation of the time shifting interface through the example of Figure

2.1. A call to thesnapshot utility causes a snapshot of the file system to be taken and returns the

snapshot epoch1057845484. For epoch numbers, we use the number of seconds since the Epoch

(00:00:00 UTC, January 1, 1970), which may be acquired through gettimeofday. Subsequent

writes to the file cause the current version to be updated, butthe version of the file at the snapshot is

unchanged. To access the snapshot version, a user or application appends the@ symbol to the name

and specifies a time.Snapshot is a user space program and library call that invokes a file-system

specificioctl, instructing ext3cow to create a snapshot. Usingioctl allowssnapshot to bypass

the virtual file system and communicate with ext3cow directly, which is consistent with our ethic of

making no changes to the kernel.

We designed the time-shifting interface for applications and enhance its interactive usabil-

ity through shell extensions. The number of seconds since the Epoch conforms togettimeofday

and is the natural way for applications to query, store, and encode time. However, humans prefer

richer time formats, such as[[[[[cc]yy]mm]dd]hh]mm[.ss] in thedate utility. To enhance us-

ability for humans, we have developed shell extensions in aTime-Traveling File Manager(TTFM),

which supports a variety of time and naming formats to help users browse versions (Section 2.8).

The time-shifting interface meets our requirements. Usersand applications specify a day,

hour, and second at which they want a file. The interface does not require the specified time to be

exactly on a snapshot. Rather, the interface treats time continuously. Requesting a file at a time

returns the file contents at the preceding snapshot. The interface uses the@ symbol, a legal symbol

for file names, so that the VFS accepts the name and passes it through to ext3cow unmodified. The

interface adds no new names to the namespace.

22

[user@machine] snapshot /usr/bin

Snapshot on /usr/bin 1057866367

[user@machine] ln -s /usr/bin@1057866367 /usr/bin.preinstall

[user@machine] /usr/bin.preinstall/gcc

Figure 2.2: Creating distinguished (named) snapshots in ext3cow.

As an interface, time shifting is useful but not complete. Wedo not wish to require users

to remember when they created versions. Thus, we allow usersto tag or enumerate all versions of a

file, reporting versions and their scope (creation and replacement time).

Distinguished snapshots may be created using links, which allows time-shifting to emu-

late the behavior of systems that put snapshots in their own namespaces or mount snapshot names-

paces in separate volumes. For example, an administrator might create a read-only version of a file

system prior to installing new software (Figure 2.2). If installing software breaksgcc, the adminis-

trator can use the oldgcc through the mounted snapshot. Because@ is a legal file system symbol,

the link can be placed anywhere in the namespace, even withinanother file system. Hard links may

also be used to connect a name directly to an old inode. This example illustrates that time-shifting is

inherited from the parent directory,i.e. the entire subtree below/usr/bin.preinstall is scoped

to the snapshot.

The time-shifting interface imposes some restrictions. Currently, the use of seconds since

the Epoch limits (named) snapshots to one per second. For systems that use snapshot as part of

recovery [52], sub-second granularity may be necessary. Because ext3cow, like ext3, uses a journal

for file system recovery, we found no emergent need for sub-second snapshot. Furthermore, upcom-

ing support for microsecond granularity time in ext3 will remove all limitations on the frequency of

snapshots in ext3cow.

23

2.4 Metadata Design

The metadata design of ext3cow supports the continuous timenotion of the time-shifting

interface within the framework of the data structures of theLinux VFS. Unlike many other snapshot

file systems [26, 80, 100, 101, 123], ext3cow does not interfere or replace the Linux common file

model, therefore, it integrates easily, requiring no changes to the VFS data structures or interfaces.

Modifications are limited to on-disk metadata and the in-memory file system specific fields of the

VFS metadata. Ext3cow adds metadata to inodes, directory entries, and the superblock that allows it

to scope requests from any point-in-time into a specific file version and support scoping inheritance.

2.4.1 Superblock

Implementing snapshot requires some method of keeping track of the snapshot epoch

of every file in the system. We place a system-wideepoch counter, stored in the on-disk and in-

memory superblock, as a reference for marking versions of a file. The counter is a 32-bit unsigned

integer, representing the number of seconds passed since the Epoch. Using one second granularity,

the 32-bit counter allows us to represent approximately 132years of snapshots. We choose the same

representation of time as does ext3. When ext3 adopts microsecond granularity times, ext3cow will

be able to represent arbitrarily fine-grained epochs in the superblock.

To capture a point-in-time image of a file system the superblock epoch number is updated

atomically to the current system time. Creating new file versions is not done at the time of the

snapshot, but, rather, at the next operation that modifies the data or metadata of an inode,e.g.a

write, truncate, or attribute change. Snapshots may be triggered internally by the file system or by

anioctl call made through the user-space snapshot utility.

24

ext3cow
specifici_epochnumber 50 43

78 0

78211

... ...

8

55

211

...

i_ino

i_cowbitmap

i_nextinode

...

0x0 0xA 0x4

Figure 2.3: Both on-disk and in-memory inodes were retrofitted to support snapshot and copy-on-
write by adding three fields: an inode epoch number, a copy-on-write bitmap, and field pointing to
the next inode in the version chain.

2.4.2 Inodes

Inode versions identify how a file’s data and attributes havechanged between snapshots.

For each system-wide snapshot, a file may have an inode that describes it in that epoch. A file

that has not changed during an epoch shares an inode with the previous epoch(s). While space is

very tight in the 128 byte ext3 on-disk inode, we were able to squeeze in an additional 20 bytes

of information by removing empty fields used for disk sector alignment, as well as fields for the

HURD operating system, which is not currently supported. Future versions of ext3 will expand the

inode size to 256 or 512 bytes, eliminating all practical space constraints [116].

Three fields were added to both the on-disk and in-memory representation of the inode

(Figure 2.3). A 32-biti epochcounter describes to which epoch an inode belongs. When writ-

ing data to an inode, the system updates thei epochcounter to the system epoch counter. The

i cowbitmap maintains the block-versioning state of a file and is described in detail in Section

2.6.2. Lastly, we have added a pointer to the next version of an inode with thei nextinode field.

Ext3cow supports both system-wide snapshots and individual file versions, by allowing

a snapshot to be taken on a per-file basis. A variant of the snapshot utility, which takes a name as

25

an argument, sets a file epoch to the current time. An individually versioned inode has the property

that itsi epochcounter exceeds the system-wide epoch. On write, ext3cow detects this condition

and performs copy-on-write based on the file’s epoch rather than the system epoch. A subsequent

snapshot ends this condition and creates another new copy-on-write version of the file.

2.4.3 Directory Entries and Naming

Directories in ext3 and ext3cow are implemented as inodes inwhich the data blocks con-

tain directory entries. Ext3cow versions directory inodesin the same manner as file inodes. The

directory entries are versioned by adding scoping metadatato the directory entry (dirent). In ext3,

a directory entry contains an inode number, a record length,a name length, and a name. To this,

we add abirth epochand adeath epochthat determine the times during which a name is valid.

Extending the directory entry is trivial and under no space constraints, because its length already

varies in order to handle names and name deletions. Because directory entries are scoped to an

epoch range, names that have been unlinked, and, therefore,given a death epoch, may be reused

in a future context to represent a new file. Ext3cow only deletes one class of files; it permanently

removes files that are unlinked in the same epoch in which theywere created.

Retaining file names in ext3cow does not increase the directory size when compared with

ext3. Both systems unlink names by increasing the record length of the preceding directory entry

to span the deleted entry, an approach taken by similar file systems such as FFS [71]. In ext3cow,

the space for unlinked names are not reused, nor are directories compacted. In contrast, FFS reuses

space only after all names in a fixed sized chunk are unlinked.Neither approach is particularly

attractive. Like both ext3 and FFS, ext3cow will benefit fromefficient directory indexing data

structures, which is a planned improvement [116].

26

2.5 Version Scoping

Ext3cow maps point-in-time requests to snapshots and object versions through scoping

metadata in directory entries and names. The logically continuous (to the second) time-shifting

interface does not match exactly the realities of versioning. Several system properties govern

ext3cow’s versioning model. First, a version of file metadata or data covers a period of time; gener-

ally many different snapshot epochs. Also, ext3cow retainsdata at the time of a snapshot and does

not track intermediate changes. When updating data or metadata, ext3cow marks versions with the

current system epoch, not the current time. Finally, ext3cow maps point-in-time requests to the

version preceding the exact time of the request. All told, this means that when accessing data in the

past, all modifications that occur during an epoch are indivisible and occur at the start of an epoch.

A notable boundary case arises in the snapshot number returned by thesnapshot utility

(Section 2.3). Intuitively, the snapshot number provides access to the file system at the time at which

the snapshot was taken.Snapshot returns the current time and sets the system epoch counter tothis

value plus one. The return value, sayj, provides a handle to all changes included in the previous

epoch. The system sets the counter for the current epoch toj + 1. The next snapshot taken atk

covers the period[j + 1,k]. Access to any time in this interval, includingk, retrieves data marked

with epoch j +1.

Scoping backward in time provides a natural interface for file versioning and recovery.

For example, a user accidentally deletes a file at some timet ≥ k, but remembers the file exists at

some times∈ [j +1,k]. To restore the file, the user specifiess in the time-shifting interface,file@s.

The enumeration of versions aids this process; users see allpoints-in-time at which the file changed

using thels file@ command and can identify the desired file version.

27

25(2)

(a) (c)
delete "B"modify 17

System Epoch = 8

(b)

Entries
Directory

Inode
Chains

<A,17> <B,17>

17(6) 17(8)

<A,17> <B,17>

25(2)86(6) 17(8)

<A,17> <B,86>

86(6) 25(2)

(5,*) (2,*) (5,*) (2,*) (5,*) (2,8)

Figure 2.4: An example of names scoping to inodes over time.

2.5.1 Scoping Inodes

Inode chains provide a continuous-time view of all versionsof a file. The chain links

inodes backward in time. To find an inode for a particular epoch, ext3cow traverses the inode chain

until it locates an inode with an epoch less than or equal to the requested point-in-time. At the

head of the chain sits the most recent version of the inode. This design minimizes access latency

to the current version – the most common operation. Figure 2.4(a) shows inode17 last written

during epoch6. Subsequent to that write, a snapshot has been taken, indicated by the system epoch

counter value of8. A modification to inode17 (Figure 2.4(b)) results in the inode being duplicated.

Ext3cow allocates new inode86 to which it copies the contents of inode17. Inode86 is assigned

epoch6 and marked as unchangeable. Inode17 is brought to the current epoch and remains a live,

writable inode.

2.5.2 Scoping Directory Entries

Directory entries are long lived, with a single name spanning many different versions of

a file, each represented by a single inode. Figure 2.4 shows directory entries as a name, inode pair

with the birth and death epoch as subscripts. The inode field points to the most recent inode to

which the name applies. For example, nameA points to inode17 at the head of the inode chain. The

28

name first occurred during epoch 5 and is currently live, represented by*. An * leaves live names

open-ended so that as time progresses and the inode epoch increases, the directory entry remains

valid. When removing a name, ext3cow updates the death epochto indicate the point-in-time at

which the name was removed. In Figure 2.4(c), nameB dies and the death epoch is set to8. The

nameB is no longer visible in the present and will not be visible forany point-in-time request that

scopes to snapshot epoch8.

The flexibility of birth/death epoch scoping respects the separation between names and

inodes in UNIX-like file systems. Many names may link to a single inode. Also, a different number

of names may link to an inode during different epochs. The same name may appear multiple times

in the same directory, linking to different inodes during non-overlapping birth/death periods.

One concern with our scoping data structures is the linear growth of the inode chains

over time. For frequently written files, each snapshot represents a new link in the chain and, thus,

accesses to versions in the distant past may be prohibitively expensive. While file systems have a

history of linear search structures,e.g.directories in ext3, we find the situation unacceptable and

amend it.

Ext3cow restricts version chains to a constant length through birth/death directory entry

scoping. When the length of a version chain meets a thresholdvalue, ext3cow terminates that chain

by setting the death epoch of the directory entry used to access this chain to the current system

epoch and creates a new chain (of length one) by creating a duplicate directory entry with a birth

epoch equal to the system epoch. The stability of inodes ensures that other directory entries linking

to the same data find the new chain. Data blocks may be shared between inodes in the two chains.

A long-lived, frequently-updated file is described by many short chains rather than a single long

29

chain. While directory entries are also linear-search structures, this scheme increases search by a

constant factor. It will improve the performance of versionsearch from O(n) to O(1) when ext3

adopts extensible hashing for directories.

2.5.3 Temporal Vnodes

The piece-wise traversal of file system paths makes it difficult to inherit time scope along

pathnames. For paths of the form.../B@time/C..., time-shifting specifies thatB, and its succes-

sors, are accessed attime. When accessingC, the file system provides onlyB’s inode as context.

Becausetime rarely matches the epoch number ofB exactly,B’s inode frequently has an epoch

number prior totime. In this case, the exact scope is lost. For example, Figure 2.5(a) illustrates

the wrong version ofC being accessed. The access toC should resolve to the inode at epoch11, but

leads mistakenly to the inode at epoch5.

To address this problem, ext3cow gives to each time context that accesses an inode a

private in-memory inode (vnode) scoped exactly to the requested time. We call this atemporal

vnodefor two reasons: it is temporary and it implements time scoping inheritance. To make a

temporal vnode, ext3cow creates an in-memory copy of the vnode to which the request scopes

and sets the epoch number of the vnode to the requested time. It also changes the inode number

to disambiguate the temporal vnode from the active vnode andother temporal vnodes. To avoid

conflicts, the modified inode number lies outside of the rangeof inodes used by the file system.

The temporal vnode correctly scopes accesses to directory entries (Figure 2.5(b)). This creates

potentially many in-memory copies of the same inode data. Because data in the past are read-only,

the copies do not present a consistency problem. The temporal vnode exists until the VFS evicts it

from cache. Subsequent accesses to the same name (e.g.B@12) locates its temporal vnode in cache.

30

..., ,...B (4,*)

..., ,...(7,14)CDirectory
entries

Inode chain

(15) (8) (4)

(11) (5)

(a) Incorrect scoping.

..., ,...B (4,*)

..., ,...(7,14)C
temporal copy

temporal copy

(15) (8) (4) (12)

(11) (5) (12)

(b) Correct scoping with temporal vnodes.

Figure 2.5: Accessing a path...B@12/C... in ext3cow. Directory entries are shown with birth
and death epochs. Inodes (circles) are show with the epoch inwhich the inode was created. Inode
numbers are not shown. Black directory entries and inodes indicate the access path according to
scoping rules. The inode chain is traversed until an inode with creation epoch prior to the epoch
of the parent inode is found. Temporal vnodes, in-memory copies of inodes, make this process
accurate by preserving epoch information along access paths.

Temporal vnodes are unchangeable and cannot be marked dirty.

Live inodes operate normally; concurrent or subsequent accesses in the present share a

single copy of the vnode with the original inode number, corresponding to the inode on disk.

2.6 Versioning with Copy-on-Write

Ext3cow uses adisk-orientedcopy-on-write scheme that supports file versioning without

polluting Linux’s page cache. Copies of data blocks exist only on disk and not in memory. This

differs from other forms of copy-on-write used in operatingsystems that create two in-memory

copies, such as process forking (vfork [71]) and the virtual memory management of shared pages.

Ext3cow has the same memory footprint for data blocks as ext3, and, thus, does not incur overheads

for copying pages or by using more memory, which reduces system cache performance.

Ext3cow employs the copy-on-write of file system blocks to implement multiple versions

31

���
���
���

���
���
���

 Newly Allocated Free Used

������
������
������
������
������

������
������
������
������
���������������������������

���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

������
������
������
������
������
������

������
������
������
������
������
������

����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

P P P P P P P

Physical Disk Blocks

20 1 4 53 6

L L L10 2 L L10 2L’

Epoch 1 Epoch 2

Figure 2.6: An example of copy-on-write. The version from epoch2 updates logical blockL1 into
L′1. Ext3cow allocates a new physical (disk) blockP6 to record the difference. All other blocks are
shared.

of data compactly. Scoping rules allow a single version of a file to span many epochs. Therefore,

ext3cow needs to create a new physical version of a file only when data changes. Frequently,

physical versions have much data in common. Copy-on-write allows versions to share a single copy

of file system blocks for common data and have their own copy ofblocks of data that have changed

(Figure 2.6).

When the most recent version of a file precedes the system epoch in time, any change

to that file creates a new physical version. The first step is toduplicate the inode, as discussed in

Section 2.5. The duplicated inodes (new and old) initially share all data blocks in common. This

includes sharing all indirect blocks, also doubly and triply indirect blocks. The first time that a

logical block in the new file is updated, ext3cow allocates a new physical disk block to hold the

data, preserving a copy of the old block for the old version. Subsequent updates to the same data in

the same epoch are written in place; copy-on-write occurs atmost once per epoch. Updates to data

in indirect blocks (resp. doubly and triply indirect blocks), change not only data blocks, but also

32

indirect blocks. Ext3cow allocates a new disk block as a copy-on-write version of an indirect block.

2.6.1 Memory Management

We isolate the copy-on-write function to the on-disk file system; we do not trespass into

kernel components such as the VFS or page cache. To achieve this isolation, ext3cow leverages

Linux’s multiple interfaces into memory; memory pages thathold file data are comprised of file

system buffers, which map in-memory blocks to disk blocks. Ext3cow performs copy-on-write by

re-allocating the file-system blocks that represent the storage for a buffer. In Linux, the VFS passes

a write system call to the on-disk file system prior to updating a pagein memory. This allows a

file system to map the file offset to a memory address and bring data into the cache from disk as

needed. In ext3cow, we take this opportunity to determine ifa file block needs to be copy-on-written

and to allocate a new backing block when necessary. Ext3cow replaces the disk block that backs

(provides storage for) an existing block in the buffer and marks the buffer dirty. Then, thewrite

call proceeds using the same memory page. At some point in thefuture, the buffer manager writes

the dirtied blocks to disk as part of cache management. The actual copy is created at this time.

Through re-allocation, ext3cow creates on-disk copies of blocks without copying data in memory.

The copy-on-write design preserves system cache performance and minimizes the I/O

overheads associated with managing multiple versions. Ext3cow consumes no additional memory

and does not pollute the page cache with additional data. Additionally, for data blocks, copy-on-

write incurs no additional I/O, because the dirtied buffersare updated by thewrite call and need

to be written back to disk anyway. The only deleterious effect of copy-on-write is I/O for indirect

blocks, which do not necessarily get updated as part of awrite in ext3.

33

2.6.2 Copy-on-write State bitmaps

Ext3cow embeds bitmaps in its inodes and indirect blocks that allow the system to record

which blocks have had a copy-on-write performed. In the inode, ext3cow uses one bit for each

direct block, one for the indirect, doubly-indirect, and triply-indirect block respectively. A bit of

value 0 indicates that a new block needs to be allocated on thenext write and bit value 1 indicates

that a new allocation of this block has been performed withinthe current epoch and that data may be

updated in place. Ext3cow zeroes the entire bitmap when duplicating an inode. In an indirect block

(resp. doubly or triply indirect block), the last eight 32-bit words of the block contain a bitmap

with a bit for every block referenced in that indirect block,which are also zeroed when creating a

copy-on-write version of the indirect block. The bitmap design allows the bitmaps to be updated

lazily – only when data are written, not on snapshot.

Because bitmaps borrow space in indirect blocks, the designreduces the maximum file

size. However, the loss is less than 10%. Ext3cow representsfiles up to 15,314,756 blocks in

comparison to 16,843,020 blocks in ext3. While larger than 232 bytes, Linux supports 64-bit file

offsets. The upcoming adoption of quadruply indirect blocks [116] will remove practical file size

limitations.

The bitmap design allows ext3cow to improve performance when truncating a file. Trun-

cate is a frequent file system operation: applications oftentruncate a file to zero length as a first

step when rewriting that file. On truncate, ext3 deallocatesall blocks of a file. In contrast, ext3cow

deallocates only those blocks that have been written in the current epoch. Other blocks remain allo-

cated to be used in older versions of the file. Therefore, ext3cow skips deallocation for any blocks

for which the corresponding state bitmap equals zero. For indirect blocks (resp. doubly or triply

34

Operational Test ext3 ext3cow

Test 1: Creates 501.90 ms 469.94 ms
Test 2: Removes 6.23 ms 6.49 ms
Test 3: Lookups 0.96 ms 0.96 ms
Test 4: Attributes 6.87 ms 7.19 ms
Test 5a: Writes 79.91 ms 80.65 ms
Test 5b: Reads 15.14 ms 15.10 ms
Test 6: Readdirs 19.72 ms 23.12 ms
Test 7: Renames 4.68 ms 9.22 ms
Test 8: Readlink 7.68 ms 12.46 ms
Test 9: Statfs 22.86 ms 22.76 ms

Table 2.2: Results from the “basic” tests of the Connectathon benchmark suite.

indirect blocks), ext3cow skips deallocation for the entire subtree underneath that block correspond-

ing to the zero bit. In this way, ext3cow minimizes I/O to deallocate blocks and update free-space

bitmaps during truncate.

2.7 Performance Evaluation

In order to quantify the cost/benefit trade-offs of versioning, we administered a variety

of experiments comparing ext3cow to its sister file system – unmodified ext3. Experiments were

conducted on an IBM x330 series server, running RedHat Linux7.3 with the 2.4.19 SMP kernel.

The machine is outfitted with dual 1.3 GHz Pentium III processors, 1.25 GB of RAM, and an IBM

Ultra2 18.2G, 10K RPM SCSI drive. Experiments for both ext3cow and ext3 were performed on

the same 5.8 GB partition.

35

0

100000

200000

300000

400000

500000

600000

Cre
ate

s

Rem
ov

es

Loo
ku

ps

A
ttr

ib
ut
es

W
rit

es

Rea
ds

Rea
dd

irs

Ren
am

es

Rea
dl
in
k

St
atf

s

T
im

e
 (

m
ic

r
o

se
c
o

n
d

s)

ext3

ext3cow

(a) Time by benchmark

0

0.5

1

1.5

2

2.5

Cre
ate

s

Rem
ov

es

Loo
ku

ps

Attr
ib
ut
es

W
rit

es

Rea
ds

Rea
dd

irs

Ren
am

es

Rea
dl
in
k

St
atf

s

N
o

r
m

a
li

z
e
d

 t
im

e
 (

 u
se

c
s

/
e
x

t3
 u

se
c
s

)

ext3

ext3cow

(b) Time normalized to ext3

Figure 2.7: Results from the “basic” tests in the Connectathon benchmark suite. All data are shown
with 95% confidence intervals.

36

2.7.1 Micro-benchmarks

The Connectathon NFS test suite evaluates operational correctness and measures perfor-

mance. There are nine parts to the “basic” series of tests. Each part tests a separate system call.

In order, they are: (1) create 155 files 62 directories 5 levels deep, (2) remove these files, (3) 150

getcwd calls, (4) 1000 chmods and stats, (5) write a 1048576 byte file 10 times and read it 10 times,

(6) create and read 200 files in a directory usingreaddir, (7) create ten files, rename and stat both

the new and old names, (8) create and read 10 symlinks, and, lastly, (9) perform 1500 statfs calls.

The results of the Connectathon basic test average the results of 20 runs on a newly

mounted (cold cache) file system. Ext3cow meets the performance of ext3 in most areas. Table

2.2 shows the average cumulative time to perform each test. We present the same data as bar graphs

in both absolute time values (Figure 2.7(a)) and time normalized to the performance of ext3 (Figure

2.7(b)). Graphs include 95% confidence intervals.

Ext3cow and ext3 perform equally on tests that read inodes and data. Examples include

tests 3 (Lookups), 5b (Reads), and 9 (Statfs). On these tests, the file systems execute the same code

paths and manipulate the same data structures.

Ext3cow also matches the performance of ext3 when writing and deallocating inodes.

Tests 1 (Creates), 2 (Removes), and Test 4 (Attributes) showequivalence. The Attributes and Re-

moves tests navigate a name tree, operating on files rather than inodes directly. The small difference

in performance comes from overhead on naming operations. Oncreate, names do not need to be

parsed for time scoping.

Benchmark results indicate that ext3cow and ext3 are comparable when writing data (Test

5a, Writes). In practice, we expect ext3cow to incur a minor penalty on writes. Ext3cow needs to

37

check the copy-on-write bitmap to determine whether a blockshould be copied the first time a

block is written. Subsequent writes to that (dirty) block donot need to check again. The benchmark

truncates and rewrites the file anew on each trial, and, therefore, does not exercise this feature.

String operations to support versioning result in ext3cow under-performing ext3 on tests

dominated by name operations. During lookup, ext3cow parses every name looking for the@ version

specifier. Ext3cow takes the string prior to@ as a file name and uses the remainder of the string for

scoping. It performs similar string parsing when reading symbolic links. Tests 7 (Renames) and

8 (Readlinks) show string manipulation overhead. Test 3 (Lookups) does not have this overhead,

because it does not call the on-disk file system lookup. Rather, test 3 calls the VFS entry point

getcwd, which can be satisfied out of the VFS’s directory entry cache.

Test 6 (Readdirs) shows the overhead of scoping names in directories. The system does

not parse strings or interpret the@ symbol during this test. Directory names are read and returned to

the calling function without interpretation. The overheadcomes from directory entry scoping only.

Ext3cow examines the birth and death epoch of every record that it reads. This overhead is modest

in the benchmark, but might be larger in practice when ext3cow needs to consider more names in a

directory – those from previous epochs as well as current epoch. In total, micro-benchmark results

indicate that ext3cow performs comparably to ext3 on data and inode operations and slightly worse

on name operations.

38

Performance in the Past

To capture the effect of multiple versions on performance, we modified the Connectathon

benchmark to measure the time to open a series of 150 versionsof a file from youngest to oldest.

These versioned inodes were created consecutively and, therefore, ext3cow lays them out near-

contiguously in block groups. Figure 2.8(a) shows the results of this test on a cold cache. To access

the first inode, the system incurs two disk seek penalties forI/O: one to lookup the inode by name

and one to access the inode. Almost all subsequent inode accesses are served out of different caches.

Figure 2.8(b) shows a closeup of Figure 2.8(a) with large values filtered out. The baseline represents

fetches out of the file-system cache, with linear scaling because accessing thekth version traverses

k inodes in cache. Every 32 inodes, the file system fetches a newgroup (4KB) of inodes from disk,

which, based on the low-latency, seem to be served out of the disk’s cache. Having fetched the next

group of inodes, subsequent accesses to these inodes are served in the file system cache.

We attempted many “worst-case” versions of this experimentby artificially aging a file

system. In one experiment, we create a block group worth of inodes (>16,000) between successive

inodes in a chain. The goal was to subvert and render ineffective ext3’s inode clustering. The results

of all experiments were indistinguishable from the original experiment, showing an initial penalty

for I/O and subsequent access out of caches. Our many attempts to “game” ext3cow were rendered

ineffective by the combination of placement policies, read-ahead, and disk (track) caching.

We also conducted experiments that flush the cache between accesses to thekth andk+1th

versions. In this experiment, each inode in the chain takes approximately 14 ms to access, because

I/O dominates in-memory operations. Performance grows linearly in the number of versions.

39

0

2000

4000

6000

8000

10000

12000

14000

16000

0 20 40 60 80 100 120 140

T
im

e
in

 M
irc

os
ec

on
ds

Version Number

Time to open

(a) Opening Past Inodes

0

50

100

150

200

250

20 40 60 80 100 120 140

T
im

e
in

 M
ic

ro
se

co
nd

s

Version Numbers

Time to open

(b) Opening Past Inodes (Enlarged)

Figure 2.8: The time to open 150 versions of a file.

40

Figure 2.9: Results from the Bonnie++ file system benchmark.

2.7.2 Bonnie++

Bonnie++ is a popular performance benchmark that quantifiesfive aspects of file system

performance based on observed I/O bottlenecks in a Unix-based file system. Bonnie performs a

series of test on files of a known size. In our experiments, two, one gigabyte files. This insures

I/O requests are not served out of a disk cache, requiring disk access. For each test, the benchmark

reports throughput, measured in kilobytes processed per second. The first test measures the rate of

sequential character output, while the second test measures sequential block output. The files, in the

third test, are then sequentially read and rewritten. Lastly, tests four and five measure the sequential

input, by character and by block.

The results of an ext3 and ext3cow Bonnie++ comparison are presented in Figure 2.9.

Ext3cow performs comparably with ext3 in all but the rewriteexperiment. This slight degradation

is due to the copy-on-write bitmap operations that must be performed when rewriting a buffer.

41

File System Allocated Blocks Allocated Inodes Dir Inodes

ext3 1684696 1243263 15318
ext3cow – none 1684696 1243263 15318
ext3cow – 24 hour 1748126 (+3.8%) 1253642 (+0.1%) 33447 (+218%)
ext3cow – 1 hour 1850189 (+9.8%) 1289513 (+3.7%) 35440 (+231%)
ext3cow – 1 min 2144663 (+27.3%) 1370547 (+10.2%) 64458 (+421%)

Table 2.3: The total number of allocated inodes and the number of those inodes allocated for direc-
tories for the ext3 and ext3cow file systems over various snapshot frequencies.

2.7.3 Trace-driven Experiments

To examine the effect of snapshots on metadata allocation, we used four months of Berke-

ley system call traces [97] to populate a file system and performed an off-line analysis, identifying

the type and amount of allocation. By aging a file system, we more accurately measure and analyze

real-world performance [109]. The traces were played back through two file systems: ext3, as a

baseline for comparison, and ext3cow. In ext3cow, we used three policies to quantify the allocation

difference for various snapshot frequencies. Snapshots were taken at 24 hour, 1 hour and 1 minute

intervals. The traces contain no file names or directory hierarchy, but do record file creations and

directory traversals. For our experiments, we use these operations to infer a directory hierarchy

and create file names. Our experiment maintains a consistentmapping of the files we create to the

file and device identifiers in the trace. This ensures that operations to the same file in the trace are

performed to the same file in our experiment.

Table 2.3 displays a 0.1% increase in metadata for 24 hour snapshots and a 10.2% increase

for 1 minute snapshots. These results indicate a small initial jump in the amount of metadata to

support any amount of versioning, followed by gradual growth as snapshot frequencies increase.

These results are consistent with those presented in CVFS [111]. Of the 10.2% increase in metadata,

4.7% comes from versioned directory inodes.

42

Results show the storage cost of indefinite versioning to be quite small for snapshot in-

tervals of an hour or more. Shorter snapshots (1 minute) produce larger overheads, although the

storage requirements only increase by 27% over four months.We expect the overhead rate of 27%

to be stable over time. The majority of this overhead comes from recent files (older than 1 minute

and younger than 1 hour) and, thus, updates to old data do not make up a large portion. Similarly,

updates from files older than a day make up only 3.8% of the total 27%. Inode overheads are smaller

than block overheads. Directory inode overheads are much greater, ranging to 421%. However, per-

centage overhead is not the right measure here. The total number of directory inodes is small when

compared with all allocated inodes; they make up only 4.7% ofall allocated inodes in the one hour

snapshot trial and fewer that 3% in all others experiments. Thus, they have a small overall effect on

the system.

2.8 Availability

Ext3cow is stable and ready for use under the GNU Public License. It is available for

download athttp://www.ext3cow.com. The site, to date, has received thousands of visitors and hun-

dreds of downloads. Beyond its use as an effective file systemfor end users, ext3cow is being

employed as the platform for additional systems research. The Zap project [83] is using ext3cow

as the foundation for a virtualization layer that provides groups of processes a consistent view of a

system. Ext3cow is also the basis of on-going research on theaging of versioning file systems at

U.C. Santa Cruz and practical time-shifting features at U.C. Berkeley. A number of free-lance pro-

grammers have asked for support in building network storagedevices based on ext3cow. The Time

Traveling File Manager (TTFM) [92] is a graphical user interface created for ext3cow that provides

43

an intuitive interface for easily navigating a time-shifting file system. TTFM’s features include a

date slider, allowing an easy navigation into views of the past, a tool for version comparison, and

the ability to launch a shell in a past file system context.

44

Chapter 3

Secure Deletion for a Federally
Compliant Storage System

“Three may keep a secret, if two of them are dead.”
– Benjamin Franklin

Under Section 802 of the Sarbanes-Oxley Act, provisions of the HIPAA Privacy Rule, and the

GLBA Safeguard Rule, data should have limited lifetime to limit the liability of a company

and to protect the privacy of clients and patients. In this chapter, we present algorithms and an

architecture for the secure deletion of individual versions of a file. The principal application of

this technology are versioning file systems used for federally compliant storage; it is designed to

eliminate data after a mandatory retention period and to protect the privacy of financial or medical

records. However, it applies to any storage system that shares data between files. We compare

two methods for secure deletion that use a combination of authenticated encryption and secure

overwriting. We also discuss implementation issues, such as the demands that secure deletion places

on version creation and the composition of file system metadata. Our results show that new secure

deletion techniques perform orders of magnitude better than previous methods.

45

3.1 Introduction

Versioning storage systems are increasingly important in research and commercial appli-

cations. However, existing versioning storage systems overlook fine-grained, secure deletion as an

essential requirement. Secure deletion is the act of removing digital information from a storage sys-

tem so that it can never be recovered. Fine-grained refers toremoving individual files or versions of

a file, while preserving all other data in the system.

Secure deletion is valuable to security conscious users andorganizations. It protects the

privacy of user data and prevents the discovery of information on retired or sold computers. Tra-

ditional data deletion, or “emptying the trash”, simply frees blocks for allocation at a later time;

the data persists, fully readable and intact. Even when dataare overwritten, information may be

reconstructed using expensive forensic techniques, such as magnetic force microscopy [125].

We are particularly interested in using secure deletion to limit liability in the regulatory

environment. By securely deleting data after they have fallen out of regulatory scope,e.g. seven

years for corporate records in Sarbanes-Oxley, data cannotbe recovered even if disk drives are

produced and encryption keys revealed. Data are gone forever and corporations are not subject to

exposure via subpoena or malicious attack.

Currently, there are no efficient methods for fine-grained secure deletion in storage sys-

tems that share data among files, such as versioning file systems [26,52,80,86,101,111] and content-

indexing systems [4,81,91].

The preferred and accepted methods for secure deletion in non-data sharing systems in-

clude: repeatedly overwriting data, such that the originaldata may not be recovered [45]; and,

encrypting a file with a key and securely disposing of the key to make the data unrecoverable [13].

46

Block sharing hinders key management in encrypting systemsthat use key disposal. If a

system were to use an encryption key per version, the key could not be discarded, as it is needed to

decrypt shared blocks in future versions that share the encrypted data. To realize fine-grained secure

deletion by key disposal, a system must keep a key for every shared block, resulting in an onerous

number of unmanageable keys. Fewer keys allow for more flexible security policies [59].

Secure overwriting also has performance concerns in versioning systems. In order to limit

storage overhead, versioning systems often share blocks ofdata between file versions. Securely

overwriting a shared block in a past version could erase it from subsequent versions. To address this,

a system would need to detect data sharing dependencies among all versions before committing to

a deletion. Also, in order for secure overwriting to be efficient, the data to be removed should be

contiguous on disk. Non-contiguous data blocks require many seeks by the disk head – the most

costly disk drive operation. By their very nature, versioning systems are unable to keep the blocks

of a file contiguous in all versions.

Our contributions include two methods for the secure deletion of individual versions that

minimize the amount of secure overwriting while providing authenticated encryption. Our tech-

niques combine disk encryption with secure overwriting so that a large amount of file data (any

block size) are deleted by overwriting a smallstubof 128 bits. We collect and store stubs contigu-

ously in a file system block so that overwriting a 4K block of stubs deletes the corresponding 1MB

of file data, even when file data are non-contiguous. Unlike encryption keys, stubs are not secret

and may be stored on disk. Our methods do not complicate key management. We also present a

method for securely deleting data out-of-band, a constructthat lends itself to multiple parties with

a shared interest in a single piece of data and to off-site back-ups.

47

To our knowledge, ext3cow is the first file system to adopt authenticated encryption (AE),

which provides both privacy and authenticity. Authenticity is essential to ensure that the data have

not changed between being written to disk and read back. Particularly in environments where stor-

age is virtualized or distributed and, thus, difficult to physically secure. Authenticated encryption

requires message expansion – ciphertext are larger than theplaintext – which is an obstacle to its

adoption. Encrypting file systems have traditionally used block ciphers, which preserve message

size, to meet the alignment and capacity constraints of diskdrives [10, 59, 122]. In practice, addi-

tional storage must be found for the expanded bits of the message. Our architecture creates a parallel

structure to the inode block map for the storage of expanded bits of the ciphertext and leverages this

structure to achieve secure deletion. Message expansion isfundamental to our deletion model.

Secure deletion and authenticated encryption has been implemented in the ext3cow ver-

sioning file system, designed for version management in the regulatory environment [86]. Experi-

mental results show that our methods for secure deletion improve deletion performance by several

orders of magnitude. Also, they show that metadata maintenance and cryptography degrade file

system performance minimally.

3.2 Related Work

Secure Deletion

Garfinkel and Shelat [41] survey methods to destroy digital data. They identify secure

deletion as a serious and pressing problem in a society that has a high turn-over in technology. They

cite an increase in lawsuits and news reports on unauthorized disclosures, which they attribute to a

poor understanding of data longevity and a lack of secure deletion tools. They identify two methods

48

of secure deletion that leave disk drives in a usable condition: secure overwriting and encryption.

In secure overwriting, new data are written over old data so that the old data are irrecov-

erable. Gutmann [45] gives a technique that takes 35 synchronous passes over the data in order to

degauss the magnetic media, making the data safe from magnetic force microscopy. (Fewer passes

may be adequate [41]). This technique has been implemented in user-space tools and in a Linux file

system [5]. Secure overwriting has also been applied in the semantically-smart disk system [108].

For file systems that encrypt data on disk, data may be securely deleted by “forgetting” the

corresponding encryption key [13]; without a key, data may never be decrypted and read again. This

method works in systems that maintain an encryption key per file and do not share data between

multiple files. The actual disposal of the encryption key mayinvolve secure overwriting.

There are many user-space tools for secure deletion, such aswipe, eraser, andbootandnuke.

These tools provide some protection when securely deletingdata. However, they may leak informa-

tion because they are unable to delete metadata. They may also leak data when the system truncates

files. Further, they are difficult to use synchronously because they cannot be interposed between file

operations.

The importance of deleting data has been addressed in other system components. A con-

cept related to stub deletion has been used in memory systems[30], which erase a large segment

of memory by destroying a small non-volatile segment. Securely deallocating memory limits the

exposure of sensitive data [18]. Similar problems have beenaddressed by Gutmann [46, 47] and

Viega [117].

49

Secure Systems

CFS [10] was an early effort that added encryption to a file system. In this user-space

tool, local and remote (via NFS) encrypted directories are accessed via a separate mount point. All

file data and metadata in that directory are encrypted using apre-defined user key and encryption

algorithm. CFS does not provide authenticated encryption.

NCryptfs [122] is a cryptographic file system implemented asa stackable layer in FiST [124].

The system is designed to be customizable and flexible for itsusers by providing many options for

encryption algorithms and key requirements. It does not provide authenticated encryption.

Cryptoloop uses the Linux cryptographic API [77] and the loopback interface to provide

encryption for blocks as they are passed through to the disk.While easy to administer for a single-

user machine, cryptographic loopback devices do not scale well to multi-user systems.

Our implementation of encryption follows the design of the CryptoGraphic Disk Driver

(CGD) [36]. CGD replaces the native disk device driver with one that encrypts blocks as they are

transfered to disk.

The encryption and storage of keys in the random-key encryption scheme resembles lock-

boxes in the Plutus file system [59] in which individual file keys are stored in lock-boxes and sealed

with a user’s key.

Cryptography

Secure deletion builds upon cryptographic constructs thatwe adapt to meet the demands

of a versioning file system. The principal methods that we employ are the all-or-nothing transform

[94], secret-sharing [106], and authenticated encryption[8]. Descriptions of their operation and

application appear in the appropriate technical sections.

50

3.3 Secure Deletion with Versions

We have a developed an approach to secure deletion for versioning systems that mini-

mizes the amount of secure overwriting, eliminates the needfor data block contiguity, and does not

increase the complexity of key management.

Secure deletion with versions builds upon authenticated encryption of data on disk. We

use a keyed transform:

fk(Bi,N)→Ci ||si

that takes a data block (Bi), a key (k) and a nonce (N) and creates an output that can be partitioned

into an encrypted data block (Ci), where|Bi |= |Ci |, and a shortstub(si), whose length is a parameter

of the scheme’s security. When the key (k) remains private, the transform acts as an authenticated

encryption algorithm. To securely delete an entire block, only the stub needs to be securely over-

written. This holdseven if the adversary is later given the key (k),which models the situation in

which a key is exposed,e.g. by subpoena. The stub reveals nothing about the key or the data, and,

thus, stubs may be stored on the same disk. It may be possible to recover securely deleted data after

the key has been exposed by a brute-force search for the stub.However, this is no easier than a

brute-force search for a secret key and is considered intractable.

A distinct advantage of our file system architecture is the use of authenticated encryp-

tion [8]. Authenticated encryption is a transform by which data are kept both privateandauthentic.

Many popular encryption algorithms, such as AES, by themselves, provide only privacy; they can-

not guarantee that the decrypted plaintext is the same as theoriginal plaintext. When decrypting, an

authenticated encryption scheme will take a ciphertext andreturn either the plaintext or an indica-

tion the ciphertext is invalid or unauthentic. A common technique for authenticated encryption is to

51

combine a message authentication code (MAC) with a standardblock cipher [8]. However, single

pass methods exist [96].

Authenticated encryption is a feature not provided by encrypting file systems to date.

This is because authenticated encryption algorithms expand data when encrypting; the resulting

cipherblock is larger than the original plaintext. This causes a mismatch in the block and page size.

File systems present a page of plaintext to the memory system, which fills completely a number

of sectors on the underlying disk. The AE encrypted ciphertext is larger than and does not align

with the underlying sectors. (Other solutions based on a filesystem or disk redesign are possible).

Expansion results in a loss of transparency for the encryption system. We address the problem of

data expansion and leverage the expansion to achieve securedeletion.

Our architecture for secure deletion with stubs does not complicate key management.

It employs the same key-management framework used by disk-encrypting file systems based on

block ciphers, such as Plutus [59] and NCryptfs [122]. It augments these to support authenticated

encryption and secure deletion.

We present and compare two implementations of the keyed transform (fk): one inspired

by the all-or-nothing transform and the other based on randomized keys. Both algorithms allow for

the efficient secure deletion of a single version. We also present extensions, based on secret-sharing,

that allow for the out-of-band deletion of data by multiple parties.

3.3.1 AON Secure Deletion

The all-or-nothing (AON) transform is a cryptographic function that, given a partial out-

put, reveals nothing about its input. No single message of a ciphertext can be decrypted in isolation

without decrypting the entire ciphertext. The transform requires no additional keys. The original

52

Input: Data Blockd1, . . . ,dm, Block ID id, Counterx,
Encryption keyK, MAC key M
1: ctr1← id||x||1||0128−|x|−|id|−1

2: c1, . . . ,cm← AES-CTRctr1
K (d1, . . . ,dm)

3: t ← HMAC-SHA-1M(c1, . . . ,cm)
4: ctr2← id||x||0||0128−|x|−|id|−1

5: x1, . . . ,xm← AES-CTRctr2
t (c1, . . . ,cm)

6: x0← x1⊕ . . .⊕xm⊕ t
Output: Stubx0, Ciphertextx1, . . . ,xm

(a) AON encryption

Input: Stub x0, Ciphertext x1, . . . ,xm, Block ID id,
Counterx, Encryption keyK, MAC key M
1: ctr2← id||x||0||0128−|x|−|id|−1

2: t ← x0⊕ . . .⊕xm

3: c1, . . . ,cm← AES-CTRctr2
t (x1, . . . ,xm)

4: t ′← HMAC-SHA-1M(c1, . . . ,cm)
5: if t ′ 6= t return⊥
6: ctr1← id||x||1||0128−|x|−|id|−1

7: d1, . . . ,dm← AES-CTRctr1
K (c1, . . . ,cm)

Output: Data Blockd1, . . . ,dm

(b) AON decryption

Figure 3.1: Authenticated encryption and secure deletion for a single data block in a versioning file
system using the all-or-nothing scheme.

intention, as proposed by Rivest [94], was to prevent brute-force key search attacks by requiring the

attacker to decrypt an entire message for each key guess, multiplying the work by a factor of the

number of blocks in the message. Boyko presented a formal definition for the AON transform [14]

and showed that it meets the OAEP [8] scheme used in many Internet protocol standards. AON has

been proposed to make efficient smart-card transactions [11, 12, 57], message authentication [35],

and threshold-type cryptosystems using symmetric primitives [2].

The AON transform is the most natural construct for the secure deletion of versions. We

aim to minimize the amount of secure overwriting. We also aimto not complicate key management.

AON fulfills both requirements while conforming to our deletion model. The all-or-nothing property

of the transform allows the system to overwrite any small subset of a data block to delete the entire

53

block; without all subsets, the block cannot be read. When combined with authenticated encryption,

the AON transform creates a message expansion that is bound to the same all-or-nothing property.

This expansion is the stub and can be securely overwritten tosecurely delete a block. Because the

AON transform requires no additional keys, key management is no more complicated than a system

that uses a block cipher.

We present our AON algorithm for secure deletion in Figure 3.1. The encryption algo-

rithm (Figure 3.1(a)) takes as inputs: a single file system data block segmented into 128-bit plaintext

messages (d1, . . . ,dm), a unique identifier for the block (id), a unique global counter (x), an encryp-

tion key (K) and a MAC key (M). To encrypt, the algorithm first generates a unique encryption

counter (ctr1) by concatenating the block identifier (id) with the global counter (x) and padding

with zeros (Step 1). This counter is used as an initialization vector to the block cipher to prevent

similar data blocks from encrypting to the same cipher block. The same counter and key combina-

tion should not be used more than once, so we use the block’s physical disk address forid and the

time in which it was written forx; both characteristics exist within an inode. An AES encryption

of the data is performed in counter mode (AES-CTR) using a single file key (K) and the counter

generated in Step 1 (ctr1). This results in encrypted data (c1, . . . ,cm). The encrypted data are au-

thenticated (Step 3) using SHA-1 and MAC key (M) as a keyed-hash for message authentication

codes (HMAC). The authenticator (t) is then used as the key to re-encrypt the data (Step 5). It is

this step that makes the authentication and encryption strongly non-separable. A second counter

(ctr2) is used to prevent repetitive encryption. A stub (x0) is generated (Step 6) by XOR-ing all the

ciphertext message blocks (x1, . . . ,xm) with the authenticator (t). The resulting stub is not secret,

rather, it is an expansion of the encrypted data and is subject to the all-or-nothing property. The

54

ciphertext (x1, . . . ,xm) is written to disk as data, and the stub (x0) is stored as metadata.

Decryption (Figure 3.1(b)) works similarly, but in reverse. The algorithm is given as

inputs: the stub (x0), the AON encrypted data block (x1, . . . ,xm), the same block ID (id) and counter

(x) as in the encryption, and the same encryption (K) and MAC (M) keys used to encrypt. The

unique counter (ctr2) is reconstructed (Step 1), the authenticator (t) is reconstructed (Step 2) and

then used in the first round of decrypting the data (Step 3). AnHMAC is performed on the resulting

ciphertext (Step 4) and the result (t ′) is compared with the reconstructed authenticator (t) (Step 5).

If the authenticators do not match, the data are not the same as when they were written. Lastly, the

data are decrypted (Step 7), resulting in the original plaintext.

Despite the virtues of providing authenticated encryptionwith low performance and stor-

age overheads, AON encryption suffers from a guessed-plaintext attack. After an encryption key

has been revealed, if an attacker can guess the exact contents of a block of data, she can verify that

the data were once in the file system. This attack does not reveal encrypted data. Once the key

is disclosed, the attacker has all of the inputs to the encryption algorithm and may reproduce the

ciphertext. The ciphertext may be compared to the undeletedblock of data, minus the deleted stub,

to prove the existence of the data.

Such an attack is reasonable within the threat model of regulatory storage; a key may be

subpoenaed in order to show that the file system contained specific data at some time. For example,

to show that an individual had read and subsequently made attempts to destroy an incriminating

email.

55

Input: Data Blockd1, . . . ,dm, Block ID id, Counterx,
Encryption keyK, MAC key M
2: nonce← id||x
3: c1, . . . ,cn← AEnonce

k (d1, . . . ,dm)

4: ctr← id||x||0128−|x|−|id|

5: c0← AES-CTRctr
K (k)

6: t ← HMAC-SHA-1M(ctr,c0)
Output: Stubc0,t,cm+1, . . . ,cn, Ciphertextc1, . . . ,cm

(a) Random-key encryption

Input: Stub c0,t,cn+1, . . . ,cm, Ciphertext c1, . . . ,cn,
Block ID id, Counterx, Encryption keyK, MAC key M
1: ctr← id||x||0128−|x|−|id|

2: t ′← HMAC-SHA-1M(ctr,c0, r)
3: if t ′ 6= t return⊥
4: k← AES-CTRctr

K (c0)
5: nonce← id||x
6: d1, . . . ,dn = AEnonce

k (c1, . . . ,cm)
Output: Data Blockd1, . . . ,dn

(b) Random-key decryption

Figure 3.2: Authenticated encryption and secure deletion for a single data block in a versioning file
system using the random-key scheme.

3.3.2 Secure Deletion Based on Randomized Keys

As mentioned by Rivest [94], avoiding such a text-guessing attack requires that an AON

transform employ randomization so that the encryption process is not repeatable given the same

inputs. The subsequent security construct generates a random key on a per-block basis.

Random-key encryption is not an all-or-nothing transform.Instead, it is a refinement of

the Boneh key disposal technique [13]. Each data block is encrypted using a randomly generated

key. When this randomly generated key is encrypted with the file key, it acts as a stub. Like AON

encryption, random-key encryption makes use of authenticated encryption, minimizes the amount

of data needed to be securely overwritten, and does not require the management of additional keys.

We give an algorithm for random-key secure deletion in Figure 3.2. To encrypt (Figure

3.2(a)), the scheme generates a random key,k, (Step 1) that is used to authenticate and encrypt

56

a data block. Similar to the unique counters in the AON scheme, a unique nonce is generated

(Step 2) to seed randomness when encrypting. Data is then encrypted and authenticated (Step 3),

resulting in an expanded message. The algorithm is built upon any authenticated encryption (AE)

scheme; AES and SHA-1 satisfy standard security definitions. To avoid the complexities of key

distribution, we employ a single encryption (K) and MAC (M) key per file (the same keys as used in

AON encryption) and use these keys to encrypt and authenticate the random key (k) (Step 5). The

encrypted randomly-generated key (c0) serves as the stub. The expansion created by the AE scheme

in Step 3 (cm+1, . . . ,cn), and the authentication of the encrypted random key (t) does not need to be

securely overwritten to permanently destroy data.

An advantage of random-key encryption over AON encryption is its speed. For example,

when the underlying AE is OCB [96], only one pass over the datais made and it is fully paralleliz-

able. However, the algorithm suffers from a larger message expansion: 384 bits per disk block are

required instead of 128 required for the AON scheme. We are exploring other more space-efficient

algorithms. We have developed another algorithm that requires no more bits than the underlying AE

scheme. Unfortunately, this is based on OAEP and a Luby-Rackoff construction [64] and is only

useful for demonstrating that space efficient constructions do exist. It is far too slow to be used in

practice, requiring six expensive passes over the data.

3.3.3 Other Secure Deletion Models

Our secure deletion architecture was optimized for the mostcommon deletion operation:

deleting a single version. However, there are different models for removing data that may be more

efficient in certain circumstances. These include efficiently removing a block or all blocks from an

entire version chain and securely deleting data shared by multiple by parties.

57

Deleting a Version Chain

When a user wishes to delete an entire version chain,i.e. all blocks associated with all

versions of a file, it may be more efficient to securely overwrite the blocks themselves rather than

each version’s stubs. This is because overwriting is slow and many blocks are shared between

versions. For example, to delete a large log file to which datahas only been appended, securely

deleting all the blocks in the most recent version will delete all past versions.

AON encryption allows for the deletion of a block of data froman entire version chain.

Due to the all-or-nothing properties of the transform, the secure overwriting of any 128 bits of a

block results in the secure deletion of that block, even if the stub persists. Ext3cow provides a

separate interface for securely deleting data blocks from all versions. If a deleted block was shared,

it is no longer accessible to other versions, despite their possession of the stub.

Randomized-key encryption does not hold this advantage; only selective components may

be deleted,i.e. c0. Thus, in order to delete a block from all versions, the system must securely

overwrite all stub occurrences in a version chain, as opposed to securely overwriting only 128 bits

of a data block in an AON scheme. To remedy this, a key share (Section 3.3.3) could be stored

alongside the encrypted data block. When the key share is securely overwritten, the encrypted data

are no longer accessible in any version. However, this strategy is not practical in most file systems,

owing to block size and alignment constraints. Storage for the key share must be provided and there

is no space in the file system block. The shares could be storedelsewhere, as we have with deletion

stubs, but need to be maintained on a per-file, rather than per-version, basis.

58

Secure Deletion with Secret-Sharing

The same data are often stored in more than one place. An obvious example of this are

remote back-ups. It is desirable that when data fall out of regulatory scope, all copies of data are

destroyed. Secret-sharing provides a solution.

Our random-key encryption scheme allows for the separationof the randomly-generated

encryption key inton key shares. This is a form of an(n,n) secret-sharing scheme [106]. In secret-

sharing, Shamir shows how to divide data inton shares, such that anyk shares can reconstruct

the data, but wherek− 1 shares reveals nothing about the data. We are able to compose a single

randomly generate encryption key (k) from multiple key shares. An individual key share may then

be given to a user with an interest in the data, distributing the means to delete data. If a single

key share is independently deleted, the corresponding dataare securely deleted and the remaining

key shares are useless. Without all key shares, the randomlygenerated encryption key may not be

reconstructed and decryption will fail.

Any number of randomly generated keys may be created in Step 1(Figure 3.2(a)) and

composed to create a single encryption key (k). To create two key shares, Step 1 is replaced with:

k← ℓ⊕ r

The stub (c0) then becomes the encryption of any one key share, for example:

c0← AES-CTRctr
K (ℓ)

With an (n,n) key share scheme, any single share may be destroyed to securely delete the corre-

59

sponding data. The caveat being that all key shares must be present at the time of decryption. This

benefits parties who have a shared interest in the same data. For example, a patient may hold a key

share for their medical records on a smartcard, enabling them to control access to their records and

also independently destroy their records without access tothe storage system.

This feature extends to the management of securely deletingdata from back-ups systems.

Data stored at an off-site location may be deleted out-of-band by overwriting the appropriate key

shares. In comparison, without secret-sharing, all copiesof data would need to be collected and

deleted to ensure eradication. Once data are copied out of the secure deletion environment, no

assurance as to the destruction of the data may be made.

3.3.4 Security Properties

It is commonplace for systems based on “novel” security protocols to be broken. For ex-

ample, the 802.11 WEP has been shown to be completely insecure after being deployed to millions

of users [113].Ad hocsecurity designs often fail careful analysis. A better approach is to build

systems using proven security constructs and protocols. Proven constructs have been reduced to

primitives that are believed to be secure because they have never been broken under intense scrutiny

(such as AES) or new protocols that have been reduced to knownsecure protocols.

AON and random-key secure deletion were designed using onlyprovably secure con-

structs and protocols and, therefore, are as secure as the underlying primitives. Provably secure is

sometimes more expensive in performance and storage overhead,e.g. the size of the stubs. This is

often the trade-off for proven security.

60

3.4 Architecture

We have implemented secure deletion in ext3cow [86], an open-source, block-versioning

file system designed to meet the requirements of electronic record management legislation. Ext3cow

supports file system snapshot, per-file versioning, and a time-shifting interface that provides real-

time access to past versions. Versions of a file are implemented by chaining inodes together where

each inode represents a version of a file.

3.4.1 Metadata for Secure Deletion

Metadata in ext3cow have been retrofitted to support versioning and secure deletion. For

versioning, ext3cow employs a copy-on-write policy when writing data. Instead of overwriting old

data with new data, ext3cow allocates a new disk block in which to write the new data. A new inode

is created to record the modification and is chained to the previous inode. Each inode represents a

single version and, as a chain, symbolizes the entire version history of a file. To support versioning,

ext3cow “steals” address blocks from an inode’s indirect blocks to embed bitmaps used to manage

copy-on-written blocks. In a 4K indirect block (respectively, doubly or triply indirect blocks), the

last thirty-two 32-bit words of the block contain a bitmap with a bit for every block referenced in

that indirect block.

A similar “block stealing” design was chosen for managing stubs. A number of block

addresses in the inode and the indirect blocks have been reserved to point to blocks of stubs. Figure

3.3 illustrates the metadata architecture. The number of direct blocks in an inode has been reduced

by one, from twelve to eleven, for storage of stubs (i data[11]) that correspond to the direct

blocks. Ext3cow reserves words in indirect blocks to be usedas pointers to blocks of stubs.

61

Stubs

211i_ino

Inode

i_data[0] Data*
Data*

COW Bitmaps

Data Pointers

i_data[10]

i_data[11]

i_data[12]

i_data[13]

i_data[14]

...

Data*
Stubs*

Ind. Data*
Ind. Data*

Indirect Block

Stub Pointers

Figure 3.3: Metadata architecture to support stubs.

62

The number of stub block pointers depends on the file system block size and the encryp-

tion method. In AON encryption, four stub blocks are required to hold the stubs corresponding to

the 4MB of data described by a 4K indirect block. Because of the message expansion and authen-

tication components of the randomized-key scheme (cn+1, . . . ,cm, t), sixteen stub blocks must be

reserved; four for the deletable stubs and twelve for the expansion and authentication. Only the stub

blocks must be securely overwritten in order to permanentlydelete data.

All stub blocks in an indirect block are allocated with strict contiguity. This has two

benefits: when securely deleting a file, contiguous stub blocks may be securely overwritten together,

improving the time to overwrite. Second, stub blocks may be more easily read when performing an

I/O. Stub blocks should not increase the number of I/Os performed by the drive for a read. Ext3cow

makes efforts to co-locate data, metadata and stub blocks ina single disk drive track, enabling all to

be read in single I/O.

Because the extra metadata borrows space from indirect blocks, the design reduces the

maximum file size. The loss is about 16%. With a 4K block size, ext3cow represents files up to

9.03×108 blocks in comparison to 1.07×109 blocks in ext3. The upcoming adoption of quadruply

indirect blocks by ext3 [116] will remove practical file sizelimitations.

3.4.2 The Secure Block Device Driver

All encryption functionality is contained in a secure blockdevice driver. By encapsulating

encryption in a single device driver, algorithms are modular and independent of the file system or

other system components. This enables any file system that supports the management of stubs to

utilize our device driver.

63

When encrypting, a data page is passed to the device driver. The driver copies the page

into its private memory space, ensuring the user’s image of the data is not encrypted. The driver

encrypts the private data page, generates a stub, and passesthe encrypted page to the low level disk

driver. The secure device driver interacts with the file system twice: once to acquire encryption and

authentication keys and once to write back the generated stub.

Cryptography in the device driver was built upon the pre-existing cryptographic API avail-

able in the Linux kernel [77], namely the AES and SHA-1 algorithms. Building upon existing

constructs simplified development, and aids correctness. Further, it allows for the security algo-

rithms to evolve, giving opportunity for the secure deletion transforms to be updated as more secure

algorithms become available. For instance, the entropy of SHA-1 has been recently called into

question [119].

3.4.3 Security Policies

When building an encrypting, versioning file system, certain policies must be observed to

ensure correctness. In our security model, a stub may never be re-written in place once committed

to disk.Violating this policy places new stub data over old stub data, allowing the old stub to be

recoverable via magnetic force microscopy or other forensic techniques.

With secure deletion, I/O drives the creation of versions. Our architecture mandates a new

version whenever a block and a stub are written to disk. Continuous versioning,e.g.CVFS [111],

meets this requirement, because it creates a new version on every write() system call. However,

for many users, continuous versioning may incur undesirable storage overheads, approximately 27%

[86, 111]. Most systems create versions less frequently. Asa matter of policy,e.g. daily, on every

file open,etc.; or, explicitly through a snapshot interface.

64

The demands of secure deletion may be met without continuousversioning. Ext3cow

reduces the creation of versions based on the observation that multiple writes to the same stub may

be aggregated in memory prior to reaching disk. We are developing write-back caching policies

that delay writes to stub blocks and aggregate multiple writes to the same stub or writes to multiple

stubs within the same disk sector. Stub blocks may be delayedeven when the corresponding data

blocks are written to disk; data may be re-written without security exposure. A small amount of

non-volatile, erasable memory or an erasable journal wouldbe helpful in delaying disk writes when

the system call specifies a synchronous write.

3.5 Experimental Results

We measure the impact that AON and random-key secure deletion have on performance

in a versioning file system. We begin by measuring the performance benefits of deletion achieved

by AON and random-key secure deletion. We then use the Bonnie++ benchmark suite to stress

the file system under different cryptographic configurations. Lastly, we explore the reasons why

secure deletion is a difficult problem for versioning file systems through trace-driven file system

aging experiments. All experiments were performed on a Pentium 4, 2.8GHz machine with 1GB of

RAM. Bonnie++ was run a 80GB partition of a Seagate BarracudaST380011A disk drive.

3.5.1 Time to Delete

To examine the performance benefits of our secure deletion techniques, we compared our

all-or-nothing and random-key algorithms with Gutmann’s traditional secure overwriting technique.

Files, sized 2n blocks forn= 0,1, . . . ,20, were created; for 4KB blocks, this a file size range of 4KB

65

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07

T
im

e
to

 D
el

et
e

(in
 m

se
cs

)

File Size (in bytes)

Traditional
Random-key
All-or-nothing

(a) Time to Delete (linear)

 10

 100

 1000

 10000

 100000

 1e+06

 10000 100000 1e+06 1e+07 1e+08

T
im

e
to

 D
el

et
e

(in
 m

se
cs

)

File Size (in bytes)

Traditional
Random-key
All-or-nothing

(b) Time to Delete (log-log)

Figure 3.4: The time to securely delete files for the secure overwriting (traditional), all-or-nothing,
and random-key techniques.

66

to 4GB. Each file was then securely deleted using each of the three secure deletion methods, and the

time to do so was measured. Because no versioning is taking place, files are relatively contiguous

on disk. Further, no blocks are shared between versions so all blocks of the file are overwritten.

Figure 3.4(a) demonstrates the dramatic savings in time that can be achieved by using stub

deletion. Files between 216 and 220 were truncated for clarity. AON deletion bests traditionaldele-

tion by a factor of 200 for 67MB files (215 blocks), with random-key deletion performing slightly

worse than AON. Differences are better seen in Figure 3.4(b), a log-log plot of the same result.

AON and random-key deletion perform similarly on files allocated only with direct blocks

(between 20 and approximately 24 blocks), and begin to diverge at 27 blocks. By the time files are

allocated using doubly indirect blocks (between 29 and 210 blocks) the performance of random-key

and AON differ substantially. This is due to the larger stub size needed for random-key deletion,

requiring more secure overwriting of stub blocks.

3.5.2 Bonnie++

Bonnie++ is a well-known performance benchmark that quantifies five aspects of file

system performance based on observed I/O bottlenecks in a UNIX-based file system. Bonnie++

performs I/O on large files (for our experiment, two 1-GB files) to ensure I/O requests are not

served out of the disk’s cache. For each test, Bonnie++ reports throughput, measured in kilobytes

per second, and CPU utilization, as a percentage of CPU usage. Five operations are tested: (1) each

file is written sequentially by character, (2) each file is written sequentially by block, (3) the files are

sequentially read and rewritten, (4) the files are read sequentially by character, and (5) the files are

read sequentially by block. We compare the results of five filesystem modes: ext3cow, ext3cow-

null, ext3cow-aes, ext3cow-aon and ext3cow-rk. Respectively, they are: a plain installation of

67

ext3cow
ext3cow−null
ext3cow−aes
ext3cow−aon
ext3cow−rk

 0

 5,000

 10,000

 15,000

 20,000

 25,000

 30,000

 35,000

 40,000

 45,000

 50,000

WriteChar WriteBlock Rewrite ReadChar ReadBlock

T
hr

ou
gh

pu
t (

K
b/

s)

(a) Throughput

ext3cow
ext3cow−null
ext3cow−aes
ext3cow−aon
ext3cow−rk

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

WriteChar WriteBlock Rewrite ReadChar ReadBlock

C
P

U
 U

sa
ge

 (
%

)

(b) CPU Utilization

Figure 3.5: Bonnie++ throughput and CPU utilization results.

68

ext3cow with no secure device driver. Ext3cow with a secure device driver that does no encryption.

Ext3cow with a secure device driver that does a simple AES encryption. Ext3cow with a secure

device driver that runs the all-or-nothing algorithm, and ext3cow with a secure device driver that

runs the random-key algorithm. Ext3cow performs comparably with ext3 [86]. Results are the

product of an average of 10 runs of Bonnie++ on the same partition.

Figure 3.5(a) presents throughput results for each Bonnie++ test. When writing, through-

put suffers very little in the presence of cryptography. Thelargest difference occurs when writing

data a block at a time; AON encryption reduces throughput by 1.3 MB/s, from 12.1 MB/s to 10.8

MB/s. This result is consistent with the literature [121]. Amore significant penalty is incurred

when reading. However, we believe this to be an artifact of the driver and not the cryptography, as

the null driver (the secure device driver employing no cryptography) experiences the same perfor-

mance deficit. The problem stems from the secure device driver’s inability to aggregate local block

requests into a single large request. We are currently implementing a request clustering algorithm

that will eliminate the disparity. In the meantime, the differences in the results for the null device

driver and device drivers that employ cryptography are minor: a maximum difference of 200 K/s

for character reading and 1.2 MB/s for block reading. Further, the reading of stubs has no effect on

the ultimate throughput. We attribute this to ext3cow’s ability to co-locate stubs with the data they

represent. Because it is based on ext3 [16], ext3cow employsblock grouping to keep metadata and

data near each other on disk. Thus, track caching on disk and read-ahead in ext3cow put stubs into

the disk and system cache, making them readily available when accessing the corresponding data.

To gauge the impact of file system cryptography on the CPU, we measured the CPU uti-

lization for each Bonnie++ test. Results are presented in Figure 3.5(b). When writing, cryptography,

69

as a percentage of the total CPU, has nearly no effect. This makes sense, as more of the CPU is

utilized by the operating system for writing than for reading. Writes may perform multiple memory

copies, allocate memory pages, and update metadata. Similarly, reading data character by character

is also CPU intensive, due to buffer copying and other memorymanagement operations, so cryp-

tography has a negligible effect. Cryptography does have a noticeable effect when reading data a

block at a time, evident in the rewrite and block read experiments. Because blocks match the page

size in ext3cow, little time must be spent by the CPU to managememory. Thus, a larger portion of

CPU cycles are spent on decryption. However, during decryption, the system remains I/O bound,

as the CPU never reaches capacity. These results are consistent with recent findings [121] that the

overheads of cryptography are acceptable in modern file systems.

The cost of cryptography for secure deletion does not outweigh the penalties for falling

out of regulatory compliance. In the face of liability for large scale identity theft, the high cost of lit-

igation, and potentially ruinous regulatory penalties, cryptography should be considered a relatively

low cost and necessary component of regulatory storage systems.

3.5.3 Trace-Driven Experiments

We present results that quantify the difficulty of achievinggood performance when se-

curely deleting data that have fallen out of regulatory scope. We replayed four months of file system

call traces [97] on an 80G ext3cow partition, taking snapshots every second. This results in 4.2

gigabytes of data in 81,674 files.

We first examine the amount of external fragmentation that results from versioning. Ex-

ternal fragmentation is the phenomenon of file blocks in nonadjacent disk addresses. This causes

multiple disk drive seeks to read or delete a file. Ext3cow uses a copy-on-write scheme to version

70

1

10

100

1000

10000

1 10 100 1000 10000 100000

N
um

be
r

of
 B

lo
ck

 E
xt

en
ts

File Size (in Kbytes)

No Versioning
Versioning

(a) Number of Block Extents

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000 6000 7000 8000

A
m

ou
nt

 o
f D

at
a

D
el

et
io

n
(a

s
a

pe
rc

en
ta

ge
 o

f f
ile

 s
iz

e)

File Size (in 4K blocks)
(b) Amount of Data to Delete

Figure 3.6: Results of trace-driven file system aging experiments.

71

files [86]. This precludes the file system from keeping all blocks of a version strictly contiguous.

Because seeks are an expensive operations, fragmentation is detrimental to the performance of tra-

ditional secure overwriting. Figure 3.6(a) shows the effect versioning has on block fragmentation.

Versioning increases dramatically the average number of block extents – regions of contiguous

blocks. This is in comparison to the ext3 file system without versioning. Note the log-log scale.

Some files have as many as 1000 block extents. This is the result of files receiving lots copy-on-write

versioning.

In practice, secure deletion provides more benefit than microbenchmark results would

indicate (Section 3.5.1). Given that seeking is the most expensive disk operation, traditional se-

cure overwriting scales with the number of block extents that need to be overwritten. For AON or

random-key secure deletion, the number of extents depends only upon the file size, not the frag-

mentation of data. Deletion performance does not degrade with versioning. For secure overwriting

of the file data, performance scales with the number of block extents. Given the large degree of

fragmentation generated through versioning, isolating deletion performance from file contiguity is

essential.

Despite the high degree of copy-on-write and fragmentation, trace results show that there

are considerable data to delete in each version,i.e. deletion is non-trivial. When a version of a file

falls out of scope, much of its data are unique to that versionand, thus, need to be securely deleted.

This is illustrated in Figure 3.6(b). This graph shows the average amount of data that needs to be

deleted as a percentage of the file size. There are very few files that have fewer than 25% unique

blocks. Most versions need 100% of their blocks deleted. This is not unexpected as many files

are written once and never modified. This is much more important for larger files which are more

72

sensitive to deletion performance; stub deletion offers less benefit when deleting very small files.

Even the largest files in the file system contain mostly uniquedata.

3.6 Applicability to Other Data Systems

There is potential for the reuse of the AON and random-key algorithms for secure deletion

in any storage system that shares data among files. Content-indexing systems, such as Venti [91],

LBFS [81], and pStore [4], have the same deletion problems and our technology translates directly.

Content-indexing stores a corpus of data blocks (for all files) and represents a file as an assemblage

of blocks in the corpus. Files that share blocks in the corpushave the same dependencies as do

copy-on-write versions.

73

Chapter 4

Verfiable Audit Trials for a
Federally Compliant Storage System

“History is the version of past events that people have decided to agree upon.”
– Napoleon Bonaparte

This chapter presents constructs that create, manage, and verify digital audit trails for version-

ing file systems. Based upon a small amount of data published to a third party, a file system

commits to a version history. At a later date, an auditor usesthe published data to verify the contents

of the file system at any point in time. Audit trails create an analog of the paper audit process for file

data, helping to meet the requirements of electronic recordlegislation, such as Sarbanes-Oxley. The

techniques address the I/O and computational efficiency of generating and verifying audit trails, the

aggregation of audit information in directory hierarchies, independence to file system architectures

and the construction of verifiable audit trails in the presence of lost data.

4.1 Introduction

The advent of Sarbanes-Oxley (SOX) [21] has irrevocably changed the audit process.

SOX mandates the retention of corporate records and audit information. It also requires processes

and systems for the verification of the same. Essentially, itdemands that auditors and companies

74

present proof of compliance. SOX also specifies that auditors are responsible for accuracy of the

information on which they report. Auditors are taking measures to ensure the veracity of the content

of their audit. For example, KPMG employs forensic specialists to investigate the management of

information by their clients.

Both auditors and companies require strong audit trails on electronic records; for both

parties to prove compliance and for auditors to ensure the accuracy of the information on which

they report. The provisions of SOX apply equally to digital systems as they do to paper records. By

a “strong” audit trail, we mean a verifiable, persistent record of how and when data have changed.

Current systems for compliance with electronic records legislation meet the record reten-

tion and metadata requirements for audit trails, but cannotbe used for verification. Technologies

such as continuous versioning file systems [111] and temporal databases may be employed in or-

der to construct and query a data history; all changes to dataare recorded and the system provides

access to the record through time-oriented file system interfaces [86] or through a temporal query

language [110]. However, for verification, past versions ofdata must be immutable. While such

systems may prevent writes to past versions by policy, histories may be changed undetectably (see

Section 4.3).

The digital audit parallels paper audits in process and incentives. The digital audit is

a formal assessment of an organization’s compliance with legislation. Specifically, verifying that

companies retain data for a mandated period. The audit process does not ensure the accuracy or

authenticity of the data itself, nor does it prevent the destruction of data. It verifies that data have

been retained, have not been modified, and are accessible within the file system. To fail a digital

audit does not prove wrongdoing. Despite its limitations, the audit process has proven itself in the

75

paper world and offers the same benefits for electronic records. The penalties for failing an audit

include fines, imprisonment, and civil liability, as specified by the legislation.

We present a design and implementation of a system for verification of version histories in

file systems based on generating message authentication codes (MACs) for versions and archiving

them with a third party. A file system commits to a version history when it presents the MAC to

the third party. At a later time, a version history may be verified by an auditor. The file system

is challenged to produce data that matches the MAC, ensuringthat the system’s past data have not

been altered. Participating in the audit process should reveal nothing about the contents of data.

Thus, we consider audit models in which organizations maintain private file systems and publish

secure, one-way functions of file data to third parties. Published data may even be stored publicly.

Design goals include minimizing the network, computational, and storage resources used

in the publication of data and the audit process. I/O efficiency is the central challenge. We provide

techniques that minimize disk I/O when generating audit trails and greatly reduce I/O when verify-

ing past data, when compared with adapting a hierarchy of MACs to versioning systems [40]. We

employ parallel message authentication codes (PMAC) [6, 7,9] that allow MACs to be computed

incrementally – based only on data that have changed from theprevious version. PMAC generation

uses only data written in the cache, avoiding read I/O to file blocks on disk. Sequences of versions

may be verified by computing a MAC for one version and incrementally updating the MAC for each

additional version, performing the minimum amount of I/O. With incremental computation, a natu-

ral trade-off exists between the amount of data published and the efficiency of audits. Data may be

published less frequently or on file system aggregates (fromblocks into files, files into directories,

etc.) at the expense of verifying more data during an audit.

76

Other technical contributions include a construct for building an audit trail based on hash

chaining and constructing hierarchies of audit information in hierarchical namespaces. Additionally,

to validate version histories in the presence of failures, we propose the use of approximate MACs

(AMAC) [31]. This allows for a weaker statement of authenticity, but supports failure-prone storage

environments.

Techniques were designed to be independent of file system architecture. This has two

benefits: (1) it allows for verifiable audit trails to be implemented on any file system regardless

of architecture, and (2) our design makes the audit robust todisk failures, immune to backup and

restore techniques, and allows for integration into information lifecycle management (ILM) systems.

We have implemented incremental authentication in the ext3cow file system, a freely-

available, open-source system designed for version management in the regulatory environment [86].

Experimental results show that PMACs can increase performance by 94% under common workloads

in a versioning file system when compared to traditional, serial hash MACs (HMAC).

4.2 Related Work

Most closely related to this work is the SFS-RO system [40], which provides authenticity

and integrity guarantees for a read-only file system. We follow their model for both the publication

of authentication metadata, replicated to storage servers, and use similar hierarchical structures.

SFS-RO focuses on reliable and verifiable content distribution; it does not address writes, multiple

versions, or efficient constructs for generating MACs.

Recently, there has been some focus on adding integrity and authenticity to storage sys-

tems. Oceanstore creates a tree of secure hashes against thefragments of a erasure-coded, dis-

77

tributed block. This detects corruption without relying onerror correction and provides authentic-

ity [120]. Patilet al [84] provide a transparent integrity checking service in a stackable file system.

The interposed layer constructs and verifies secure checksums on data coming to and from the file

system. Haubertet al [50] provide a survey of tamper-resistant storage techniques and identify

security challenges and technology gaps for multimedia storage systems.

Schneier and Kelsey describe a system for securing logs on untrusted machines [102]. It

prevents an attacker from reading past log entries and makesthe log impossible to corrupt without

detection. They employ a similar “audit model” that focuseson the detection of attacks, rather

than prevention. As in our system, future attacks are deterred by legal or financial consequences.

While logs are similar to version histories, in that they describe a sequence of changes, the methods

in Schneier and Kelsey secure the entire log,i.e. all changes to date. They do not authenticate

individual changes (versions) separately.

To our knowledge, no previous research has addressed the integrity and authenticity of

version sequences with each version individually verifiable, nor devised constructs to update MACs

incrementally in a file system.

Efforts at cryptographic file systems and disk encryption are orthogonal to audit trails.

Such technologies provide for the privacy of data and authenticate data coming from the disk. How-

ever, the guarantees they provide do not extend to a third party and, thus, are not suitable for audit.

4.3 Secure Digital Audits

A digital audit of a versioning file system is the verificationof its contents at a specific

time in the past. The audit is a challenge-response protocolbetween an auditor and the file system

78

to be audited. To prepare for a future audit, a file system generates authentication metadata that

commits the file system to its present content. This metadataare published to a third party. To

conduct an audit, the auditor accesses the metadata from thethird party and then challenges the

file system to produce information consistent with that metadata. Using the security constructs

we present, passing an audit establishes that the file systemhas preserved the exact data used to

generate authentication metadata in the past. The audit process applies to individual files, sequences

of versions, snapshots of directories and directory hierarchies, and an entire file system.

Our general approach resembles that of digital signature and secure time-stamp services,

e.g. the IETF Time-Stamp Protocol [1]. From a model standpoint, audit trails extend such services

to apply to aggregates, containers of multiple files, and to version histories. Such services provide

a good example of systems that minimize data transfer and storage for authentication metadata

and reveal nothing about the content of data prior to audit. We build our system around message

authentication codes, rather than digital signatures, forcomputational efficiency.

The publishing process requires long-term storage of authenticating metadata with “fi-

delity”; the security of the system depends on storing and returning the same values. This may be

achieved with a trusted third party, similar to a certificateauthority. It may also be accomplished

via publishing to censorship-resistant stores [118].

The principal attack against which this system defends is the creation of false version

histories that pass the audit process. This class of attack includes the creation of false versions – file

data that matches published metadata, but differ from the data used in its creation. It also includes

the creation of false histories, undetectably inserting ordeleting versions into a sequence.

79

In our audit model, the attacker has complete access to the file system. This includes the

ability to modify the contents of the disk arbitrarily. Thisthreat is realistic. For example, disk drives

may be accessed directly, through the device interface and on-disk structures are easily examined

and modified [39]. In fact, we feel that the most likely attacker is the owner of the file system. For

example, a corporation may be motivated to alter or destroy data after it comes under suspicions

of malfeasance. The shredding of Enron audit documents at Arthur Anderson in 2001 provides a

notable paper analog. Similarly, a hospital or private medical practice might attempt to amend or

delete a patient’s medical records to hide evidence of malpractice. Such records must be retained in

accordance with HIPAA [22].

Obvious methods for securing the file system without a third party are not promising. Disk

encryption provides no benefit, because the attacker has access to encryption keys. It is useless to

have the file system prevent writes by policy, because the attacker may modify file system code.

Write-once, read-many (WORM) stores alone are insufficient, as data may be modified and written

to a new WORM device.

Tamper-proof storage devices are a promising technology for the creation of immutable

version histories [76]. However, they do not obviate the need for external audit trails, which estab-

lish the existence of changed data with a third party. Tamper-resistant storage complements audit

trails in that it protects data from destruction or modification. Also, such devices are likely to be

expensive and expense is the major obstacle to compliance [48].

80

4.4 A Secure Version History

The basic construct underlying digital audit trails is a message authentication code (MAC)

that authenticates the data of a file version and binds that version to previous versions of the file.

We call this aversion authenticatorand compute it on versionvi as

Avi = MACK(vi ||Avi−1);Av0 = MACK(v0||N) (4.1)

in which K is an authentication key andN is a nonce, derived uniquely from file system metadata.

N differentiates the authenticators for files that contain the same data, including empty files. The

MAC function must be a universal one-way hash function [82].As a corollary,K must be selected

at random by the auditor (Section 4.5.2). By including the version data in the MAC, it authenticates

the content of the present version. By including the previous version authenticator, we bindAvi to

a unique version history. This creates a keyed hash chain coupling past versions of the file. The

wide application of one-way hash chains in password authentication [63], micropayments [94], and

certificate revocation [74] testifies to their utility and security.

The authentication key binds each MAC to a specific identity and audit scope. During an

audit, the file system revealsK to the auditor, who may then verify all version histories authenticated

with K. K may be securely derived from a known identity,e.g. in a public-key infrastructure. In

this case, the key binds the version history to that identity. A file system may use many keys to

limit the scope of an audit,e.g. to a specific user. For example, Plutus supports a unique key for

each authentication context [59], called afilegroup. Authentication keys derived from filegroup keys

would allow each filegroup to be audited independently.

81

A file system commits to a version history by transmitting andstoring version authenti-

cators at a third party. The system relies on the third party to store them persistently and reproduce

them accurately,i.e. return the stored value keyed by file identifier and version number. It also as-

sociates each stored version authenticator with a secure time-stamp [68]. An audit trail consists of a

chain of version authenticators and can be used to verify themanner in which the file changed over

time. We label the published authenticatorPvi , corresponding toAvi computed at the file system.

The audit trail may be used to verify the contents of a single version. To audit versionvi ,

an auditor requests version datavi and the previous version authenticatorAvi−1 from the file system,

computesAvi using Equation 4.1 and compares this to the published valuePvi . The computed and

published identifiers match if and only if the data currentlystored by the file system are identical to

the data used to compute the published value. This process verifies the version data contentvi even

thoughAvi−1 is untrusted.

We do not require all version authenticators to be published. A version history (sequence

of changes) to a file may be audited based on two published version authenticators separated in time.

An auditor accesses two version authenticatorsPvi andPvj , i < j. The auditor verifies the individual

versionvi with the file system. It then enumerates all versionsvi+1, . . . ,v j , computing each version

identifier in turn until it computesAvj . Again,Avj matchesPvj if and only if the data stored on the

file system is identical to the data used to generate the version identifiers,including all intermediate

versions.

Verifying individual versions and version histories relies upon the collision resistance

properties of MACs. For individual versions, the auditor uses the untrustedAvi−1 from the file

system, because the MAC authenticates versionvi even when an adversary can choose inputAvi−1.

82

A similar argument allows a version history to be verified based on the authenticators of its first

and last version. Finding an alternate version history thatmatches both endpoints is as difficult as

finding a collision.

Version authenticators may be published infrequently. Thefile system may perform many

updates without publication as long as it maintains a local copy of a version authenticator. This cre-

ates a natural trade-off between the amount of space and network bandwidth used by the publishing

process and the efficiency of verifying version histories.

4.4.1 Incrementally Calculable MACs

I/O efficiency is the principal concern in the calculation and verification of version au-

thenticators at the file system. A version of a file shares datawith its predecessor; it differs only

the blocks of data that are changed. As a consequence, the filesystem performs I/O only on these

changed blocks. For performance reasons, it is imperative that the system updates audit trails based

only on the changed data.

To achieve our efficiency goals, we employ a parallel messageauthentication code (PMAC)

[6,7,9] to compute version authenticators. By using the PMAC, we create the authenticator for the

new version using the authenticator of the predecessor and the data of the changed blocks. We say

that the authenticator isincrementally calculable. In this way, the effort to compute the authentica-

tor scales with the size of the changed data, and, thus, with the amount of I/O. In contrast, a serial

MAC requires the whole file to be examined in the constructionof the MAC. A PMAC is a MAC

and, thus, preserves all of its security properties [9].

We use the parallel property of the PMAC to perform computations separated in time,

rather than the original intended use of separating computation in space. PMAC computes a one-

83

way function on each block of the input. Each versionvi comprises blocksbvi (0), . . . ,bvi (n) equal

to the file system block size and a file system independent representation of the versions metadata,

denotedMvi . To be consistent with the original publication [9], for block bvi , we label the one-way

function on each blockY(bvi). The output of the PMAC is the exclusive-or of the one-way functions

of the input blocks and the previous version authenticator.

Avi =
n

O

j=0

Y(bvi (j))⊗Y(Avi−1)⊗Y(Mvi). (4.2)

This form is the full computation. There is also an incremental computation. Assuming that version

vi differs fromvi−1 in one block only,e.g. bvi (j) = bvi−1(j), j 6= k;bvi (k) 6= bvi−1(k), we observe that

Avi = Avi−1⊗Y(bvi (k))⊗Y(bvi−1(k))⊗Y(Avi−2)⊗Y(Avi−1)⊗Y(Mvi−1)⊗Y(Mvi).

This extends trivially to any number of changed blocks. The updated version authenticator

adds the contribution of the changed blocks and removes the contribution of those blocks in the

previous version. It also updates the past version authenticator and metadata.

The computation of PMAC authenticators scales with I/O sizewhereas the performance

of a hash message authentication code (HMAC) scales with thefile size. With PMACs, only new

data being written to a version will be authenticated. HMACsmust authenticate the entire file,

irrespective of the I/O size. This is problematic as studiesof versioning file systems show that

data change at a fine granularity [86, 111]. Our results (Section 4.6) confirm the same. More

importantly, the computation of the updated PMAC version authenticator may be performed on data

available in the cache, requiring little to no additional disk I/O. PMAC computations require only

84

those data blocks being modified, which are already in cache.Computing an HMAC may require

additional I/O. This is because system caches are managed ona page basis, leaving unmodified and

inaccessible portions of an individual file version on disk.When computing an HMAC for a file,

all file data would need to be accessed. As disk accesses are a factor of 105 slower than memory

accesses, computing an HMAC may be substantially worse thanalgorithmic performance would

indicate.

The benefits of incremental computation of MACs apply to bothwriting data and conduct-

ing audits. When versions of a file share much data in common, the differences between versions are

small, allowing for efficient version verification. Incremental MACs allow an auditor to authenticate

the next version by computing the authenticity of only the data blocks that have changed. When

performing an audit, the authenticity of the entire versionhistory may be determined by a series

of small, incremental computations. HMACs do not share thisadvantage and must authenticate all

data in all versions to verify authenticity.

4.4.2 File System Independence

Many storage management tasks alter a file system, includingthe metadata of past ver-

sions, but should not result in an audit failure. Examples include: file-oriented restore of backed-up

data after a disk failure, resizing or changing the logical volumes underlying a file system, com-

paction/defragmentation of storage, and migration of datafrom one file system to another. Thus,

audit models must be robust to such changes. We call this property file system independence. Audit

information is bound to the file data and metadata, transfersfrom system to system, and remains

valid when the physical implementation of a file changes withthe caveat that all systems storing

data support audit trails.

85

Our authenticators use the concept ofnormalized metadatafor file system independence.

Normalized metadata are the persistent information that describe attributes of a file system object

independent of the file system architecture. These metadatainclude: file size, ownership and per-

missions, and modification, creation and access times. These fields are common to most file systems

and are stored persistently with every file. Normalized metadata do not include physical offsets and

file system specific information, such as inode number, disk block addresses, or file system flags.

These fields are volatile in that storage management tasks change their values. Normalized metadata

are included in authenticators and become. part of a file’s data for the purposes of audit trails.

4.4.3 Hierarchies and File Systems

Audit trails must include information about the entire state of the file system at a given

point in time. Auditors need to discover the relationships between files and interrogate the contents

of the file system. Having found a file of interest in an audit, natural questions include: what other

data was in the same directory at this time? or, did other filesin the system store information on the

same topic? The data from each version must be associated with a coherent view of the entire file

system.

Authenticating directory versions as if they were file versions is insufficient. A directory

is a type of file in which the data are directory entries (name-inode number pairs) used for indexing

and naming files. Were we to use our previous authenticator construction (Equation 4.2), a directory

authenticator would be the MAC of its data (directory entries), the MAC of the previous directory

authenticator and its normalized metadata. However, this construct fails to bind the data of a di-

rectory’s files to the names, allowing an attacker to undetectably exchange names of files within a

directory.

86

We have developed a construction of trees of MACs that bind individual versions and

their names to a file system hierarchy, which authenticates the entire versioning file system. In

addition to the normalized inode information and previous authenticator used to authenticate files,

directory authenticators are composed of name-authenticator pairs. Each file within the directory

concatenates its authenticator to its corresponding name,and a one-way hash of the result is taken.

ADi =
n

O

j=0

Y(namej |Avj)⊗Y(ADi−1)⊗Y(MDi).

This binds each file and sub-directories data to their names in the parent directory. Directory version

authenticators continue recursively to the file system root, binding the entire file system image. The

SFS-RO system [40] employed a similar technique to fix the content of a read-only file system

with single versions of each file and directory. Our methods differ from SFS-RO in that they are

incremental and must account for updates.

For efficiency reasons, we bind versions to the directory’s authenticator lazily. Figure 4.1

shows how directoryD binds to filesS,T,U . This is done by including the authenticators for specific

versionsS1,T2,U4 that were current at the time versionD2 was created. However, subsequent file

versions (e.g. S2,T3) may be created without updating the directory version authenticatorAD2. The

system updates the directory authenticator only when the contents change;i.e. files are created,

destroyed or renamed. This corresponds well with our notionof a directory version. In this example,

when deleting fileU (Figure 4.1) the authenticator is updated to the current versions. Were we to

bind directory version authenticators directly to the content of the most recent file version, they

would need to be updated every time that a file is written. Thisincludes all parent directories

recursively to the file system root – an obvious performance concern.

87

AD2 = Y(S|AS1)⊗Y(T|AT2)⊗Y(U |AU4)⊗Y(AD1)⊗Y(MD2)

2S 4S3S1S

1T 3T2T

3U1U 2U 4U

D2D1

AD3 = Y(S|AS4)⊗Y(T|AT5)⊗Y(AD2)⊗Y(MD3)

1T 3T 4T2T 5T

3U1U 2U 4UX

2S 3S 4S1S

D2 D3D1

Figure 4.1: Updating directory version authenticators when fileU is deleted.

88

Binding a directory authenticator to a file version binds it to all subsequent versions of

that file, by hash chaining of the file versions. This is limited to the portion of the file’s version

chain within the scope of the directory. (Ext3cow employs timestamps for version numbers, which

can be used to identify the valid file versions within each directory version.)

Updating directory authenticators creates a time-space trade-off similar to that of publi-

cation frequency (Section 4.4). When auditing a directory at a particular point in time, the auditor

must access the directory at a point in time and then follow the children files’ hash chains forward

to that point in time. Thus, updating directory authenticators more frequently may be desirable to

speed the audit process.

4.5 File System Implementation

We have implemented digital audit trails using PMACs in ext3cow [86], an open-source,

block-versioning file system designed to meet the requirements of electronic record management

legislation. Versions of a file are implemented by chaining inodes together in which each inode

represents a version. The file system traverses the inode chain to generate a point-in-time view of a

file. Ext3cow provides the features needed for an implementation of audit trails: it supports contin-

uous versioning, creating a new version on every write; and,maintains old and new versions of data

and metadata concurrently for the incremental computationof version authenticators using parallel

MACs. Version authentication is achieved by storing that version’s MAC in its corresponding inode.

We have already retrofitted the metadata structures of ext3 to support versioning and secure deletion

based on authenticated encryption [87,88].Version authenticators are a straightforward extension to

ext3cow’s already augmented metadata, requiring only a fewbytes per inode.

89

4.5.1 Metadata for Authentication

Metadata in ext3cow have been improved to support incremental versioning authentica-

tors for electronic audit trails. To accomplish this, ext3cow “steals” a single data block pointer

from the inode, replacing it with an authentication block pointer, i.e. a pointer to disk block hold-

ing authentication information. Figure 4.2 illustrates the metadata architecture. The number of

direct blocks has been reduced by one, from twelve to eleven,for storing an authenticator block

(i data[11]). Block stealing for authenticators reduces the effectivefile size by only one file

system block, typically 4K.

Each authenticator block stores five fields: the current version authenticator (Avi), the au-

thenticator for the previous version (Avi−1), the one-way hash of the authenticator for the previous

version (Y(Avi−1)), the authenticator for the penult-previous version (Avi−2), and the the one-way

hash of the authenticator for the penult-previous version (Y(Avi−2)). Each current authenticator

computation requires access to the previous and penult-previous authenticators and their hashes. By

storing authenticators and hashes for previous versions with the current version, the system may

avoid two read I/Os, one for each previous version authenticator and hash computations. When a

new version is generated and a new inode is created, the authenticator block is copy-on-written and

“bumps” each entry;i.e., copying the once current authenticator (Avi) to the previous authenticator

(Avi−1), and the previous authenticator (Avi−1) and hash (Y(Avi−1)) to the penult-previous authenti-

cator (Avi−2) and hash (Y(Avi−2)). Since the hash of the once current authenticator (Avi) is not yet

known, theY(Avi−1) field is zeroed, and is calculated on a as-needed basis.

Authenticator blocks should not increase the number of I/Osperformed by the system.

The block allocator in ext3cow makes efforts to co-locate data, metadata and authenticator blocks

90

211i_ino

Inode

i_data[0] Data*
Data*

i_data[10]

i_data[11]

i_data[12]

i_data[13]

i_data[14]

...

Data*

Ind. Data*
Ind. Data*

Ind. Data*

Authenticator Block

Av

Av

Av i

i−1

i−1

i−2

i−2

Y(Av)

Y(Av)

Figure 4.2: Metadata architecture to support version authenticators.

91

in a single disk drive track, maintaining contiguity. Authenticator blocks are very likely to be read

in the same I/O as the inode or data blocks, allowing the authenticator block to be read out of the

track cache.

4.5.2 Key Management

Key management in ext3cow uses lockboxes [59] to store a per-file authentication key.

The file owner’s private key unlocks the lockbox and providesaccess to the authentication key.

Lockboxes were developed as part of the authenticated encryption and secure deletion features of

ext3cow [87,88].

Per-file authentication keys are generated by the system in collaboration with the auditor.

The auditor must add randomness to the generation ofK to meet the definition of a universal one-

way hash function [82]. Authentication keys are then storedwithin within a user’s lockbox.

4.6 Experimental Results

We measure the impact of authentication on versioning file systems and compare the

performance characteristics of HMAC and PMAC in the ext3cowversioning file system. We begin

by comparing the CPU and disk throughput performance of HMACand PMAC by using two micro-

benchmarks; one designed to contrast the maximum throughput capabilities of each algorithm, and

one designed to highlight the benefits of the incremental properties of PMAC. We then use a traced

file system workload to illustrate the aggregate performance benefits of incremental authentication

in a versioning file system. Lastly, we use file system traces to characterize some of the overheads

of generating authenticators for the auditing environment. Both authentication functions, PMAC

92

and HMAC, were implemented in the ext3cow file system using the standard SHA1 hash function

provided by the Linux kernel cryptographic API [77]. All experiments were performed on a Pentium

4, 2.8GHz machine with 1 gigabyte of RAM. Trace experiments were run on a 80 gigabyte ext3cow

partition of a Seagate Barracuda ST380011A disk drive.

4.6.1 Micro-benchmarks

To quantify the efficiency of PMAC, we conducted two micro-benchmark experiments:

createand append. The create test measures the throughput of creating and authenticating files

of size 2N bytes, whereN = 0,1, . . . ,30 (1 byte to 1 gigabyte files). The test measures both CPU

throughput,i.e. the time to calculate a MAC, and disk throughput,i.e. the time to calculate a MAC

and write the file to disk. Files are created and written in their entirety. Thus, there are no benefits

from incremental authentication. Theappendexperiment measures the CPU and disk throughput of

appending 2N bytes to the same file and calculating a MAC, whereN = 0,1, . . . ,29 (1 byte to 500

megabytes). For PMAC, an append requires only a MAC of each new data block and an XOR of

the results with the file’s authenticator. HMAC does not havethis incremental property and must

MAC the entire file in order to generate the correct authenticator, requiring additional read I/O. We

measure both warm and cold cache configurations. In a warm cache, previous appends are still in

memory and the read occurs at memory speed. In practice, a system does not always find all data in

cache. Therefore, the experiment was also run with a cold cache; before each append measurement,

the cache was flushed.

Figure 4.3(a) presents the results of thecreatemicro-benchmark. Traditional HMAC-

SHA1 has higher CPU throughput than PMAC-SHA1, saturating the CPU at 134.8 MB/s. The

PMAC achieves 118.7 MB/s at saturation. This is expected, asPMAC-SHA1 must perform at least

93

 20

 40

 60

 80

 100

 120

 140

 160

 0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

T
hr

ou
gh

pu
t (

M
by

te
s/

se
c)

File Size (Kbytes)

HMAC-SHA1 CPU
PMAC-SHA1 CPU
HMAC-SHA1 Disk
PMAC-SHA1 Disk

(a) Create

 20

 40

 60

 80

 100

 120

 140

 160

 1 10 100 1000 10000 100000

T
hr

ou
gh

pu
t (

M
by

te
s/

se
c)

Append Size (Kbytes)

PMAC-SHA1 CPU
HMAC-SHA1 CPU
PMAC-SHA1 Disk
HMAC-SHA1 Disk

HMAC-SHA1 Disk-Cold

(b) Append

Figure 4.3: Results of micro-benchmarks measuring the CPU and disk throughput.

94

one extra call to SHA1 for each block [6]. Additionally, SHA1appends the length of the mes-

sage that it’s hashing to the end of the message, padding up to512-bit boundaries. PMAC-SHA1,

therefore, hashes more data; up ton*512 bits more forn blocks. Despite PMAC’s computational

handicap, disk throughput measurements have less disparity. HMAC-SHA1 achieves a maximum

of 28.1 MB/s and PMAC-SHA1 a maximum of 26.6 MB/s. This illustrates that calculating authen-

ticators for a file system is I/O-bound, making PMAC-SHA1’s ultimate performance comparable to

HMAC-SHA1.

The results of theappendmicro-benchmark makes a compelling performance argument

and are exhibited in Figure 4.3(b) – note the log scale. We observe PMAC-SHA1 outperforms

HMAC-SHA1 in both CPU and disk throughput measurements. PMAC-SHA1 bests HMAC-SHA1

CPU throughput, saturating at 120.3 MB/s, compared to HMAC-SHA1 at 62.8 MB/s. Looking

at disk throughput, PMAC-SHA1 also outperforms the best-case of an HMAC calculation, warm-

cache HMAC-SHA1, achieving a maximum 31.7 MB/s, compared towarm-cache HMAC-SHA1

at 20.9 MB/s and cold-cache HMAC-SHA1 at 9.7 MB/s. This performance gain is a function of

the incremental nature of PMACs. In addition to the extra computation to generate the MAC, an

ancillary read I/O is required to bring the old data into the MAC buffer. While theappendbenchmark

is contrived, it is a common I/O pattern. Many versioning filesystems implement versioning with

a copy-on-write policy. Therefore, all I/O that is not a fulloverwrite is, by definition, incremental

and benefits from the incremental qualities of PMAC.

4.6.2 Aggregate Performance

We take a broader view of performance by quantifying the aggregate benefits of PMAC on

a versioning file system. To accomplish this, we replayed four months of system call traces [97] on

95

No Authentication PMAC-SHA1 HMAC-SHA1

1.98 MB/s 1.77 MB/s 108.78 KB/s

Table 4.1: The trace-driven throughput of no authentication, PMAC-SHA1, and HMAC-SHA1.

an 80 gigabyte ext3cow partition, resulting in 4.2 gigabytes of data in 81,674 files. Our experiments

compare trace-driven throughput performance as well as thetotal computation costs for performing

a digital audit using the PMAC and HMAC algorithms. We analyze aggregate results of run-time

and audit performance and examine how the incremental computation of MACs benefits copy-on-

write versioning.

Write Performance

The incremental computation of PMAC minimally degrades on-line system performance

as compared to HMAC. We measure the average throughput of thesystem while replaying four

months of system call traces. The traces were played as fast as possible in an effort to saturate

the I/O system. The experiment was performed on ext3cow using no authentication, HMAC-SHA1

authentication and PMAC-SHA1 authentication. Results arepresented in Table 4.1. PMAC-SHA1

is able to achieve a 93.9% improvement in run-time performance over HMAC-SHA1; 1.77 MB/s

versus 108.78 KB/s. HMAC-SHA1’s degradation is due to the additional read I/O and computation

time it must perform for every call to write. The performancepenalty incurred by PMAC-SHA1

is minimal due to its ability to compute authenticators using only in-cache data. PMAC-SHA1

achieves 89% of the throughput of a system with no authentication.

To better understand the run-time performance differencesbetween PMAC and HMAC,

we characterize the number and size of writes and how they arewritten to the various files in the

96

system. Figure 4.4(a) presents statistics on the number andsize of write I/Os, whereas Figure 4.4(b)

shows number of write I/Os performed by file size. Both plots are log-log. We observe that of the

16,601,128 write I/Os traced over four months, 99.8% of the I/Os are less than 100K, 96.8% are

less than 10K, and 72.4% are less than 1K in size. This elucidates the fact that a substantial number

of I/Os are small. We also observe that files of all sizes receive many writes. Files as large as 100

megabytes receive as many as 37,000 write I/Os over the course of four months. Some files, around

5MB in size, receive nearly two million I/Os. These graphs show that I/O sizes are, in general,

small, and that files of all sizes receive many I/Os.

The relationship between I/O size and file size reveals the necessity of incremental MAC

computation. Figure 4.4(c) presents the average write I/O size as a percentage of the file size over

file sizes. This plot shows that there are few files that receive large writes or entire overwrites in

a single I/O. In particular, files larger than 2MB receive writes that are a very small percentage of

their file size. The largest files receive as little as 0.025% of their file size in writes, and nearly

all files receive less than 25% of their file size in write I/Os.It is this disproportionate I/O pattern

that benefits the incremental properties of PMAC. When most I/Os received by large files are small,

a traditional HMAC suffers in face of additional computation time and supplementary I/Os. The

performance of PMAC, however, is immune to file size and is a function of write size alone.

Audit Performance

To generate aggregate statistics for auditing, we aged the file system by replaying four

months of traced system calls, taking snapshots daily. We then performed two audits of the file

system, one using HMAC-SHA1 and one using PMAC-SHA1. Our audit calculated authenticators

for every version of every file. Table 4.2 presents the aggregate results for performing an audit using

97

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000 10000 100000

N
um

be
r

of
 IO

s

IO Size (Kbytes)

(a) Number of write I/Os by I/O size

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000 10000 100000

N
um

be
r

of
 IO

s

File Size (Kbytes)

(b) Number of write I/Os by file size

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000 4000 6000 8000 10000

A
ve

ra
ge

 IO
 S

iz
e/

F
ile

 S
iz

e
(%

)

File Size (Kbytes)

(c) Average write I/O size as percentage of the file size by
file size

Figure 4.4: Characterization of write I/Os from trace-driven experiments.

98

Number of Versions HMAC-SHA1 (seconds) PMAC-SHA1 (seconds)

All 11209.4 10593.1
≥ 2 670.1 254.4

Table 4.2: The number of seconds required to audit all files and files with two or more version in an
entire file system using HMAC-SHA1 and PMAC-SHA1.

PMAC-SHA1 and HMAC-SHA1. The table shows the result for all files and the result for those

files with two or more versions. Auditing the entire 4.2 gigabytes of file system data using standard

HMAC-SHA1 techniques took 11,209 seconds, or 3.11 hours. Using PMAC-SHA1, the audit took

10,593 seconds, or 2.94 hours; a savings of 5% (10 minutes).

Most files in the trace (88%) contain a single version, typical of user file systems. These

files dominate audit performance and account for the similarity of HMAC and PMAC results. How-

ever, we are interested in file systems that contain medical,financial, and government records and,

thus, will be populated with versioned data. To look auditing performance in the presence of ver-

sions, we filter out files with only one version. On files with two or more versions, PMAC-SHA1

achieves a 62% performance benefit over HMAC-SHA1, 670 versus 254 seconds. A CDF of the

time to audit files by number of versions is presented in Figure 4.5(a). PMAC-SHA1 achieves a

range of 37% to 62% benefit in computation time over HMAC-SHA1for files with 2 to 112 ver-

sions. This demonstrates the power of incremental MACs whenverifying long version chains. The

longer the version chain and the more data in common, the better PMAC performs.

Looking at audit performance by file size shows that the benefit is derived from long

version chains. Figure 4.5(b) presents a break down of the aggregate audit results by file size. There

exists no points at which PMAC-SHA1 performs worse than HMAC-SHA1, only points where they

are the same or better. Where PMAC-SHA1 and HMAC-SHA1 pointsintersect, files either have

99

 0

 100

 200

 300

 400

 500

 600

 700

 800

 20 40 60 80 100 120

T
im

e
to

 C
om

pu
te

 A
ud

it
(s

ec
on

ds
)

Number of Versions

PMAC-SHA1
HMAC-SHA1

(a) The CDF of the time to audit an entire file system of files with more than one version, by number
of versions

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 1000 2000 3000 4000 5000 6000 7000 8000

T
im

e
to

 C
om

pu
te

 A
ud

it
(m

s)

File Size (Kbytes)

85 Versions

75 Versions

33 Versions

10 Versions

21 Versions

20 Versions

 PMAC-SHA1
 HMAC-SHA1

(b) Aggregate results for auditing an entire file system by file size

Figure 4.5: Aggregate auditing performance results for PMAC-SHA1 and HMAC-SHA1.

100

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 20 40 60 80 100

A
ut

he
nt

ic
at

or
 T

ra
ns

fe
r

S
iz

e
(K

by
te

s)

Simulation Time (Days)

Day
Hour

Minute

Figure 4.6: Size of authentication data from four months of traced workloads at three snapshot
intervals.

a single version or are files in which versions contains no shared data. As the number of versions

increase and much data are shared between versions, large discrepancies in performance arise. Some

examples of files with many versions that share data are annotated. PMAC shows little performance

variance with the number of versions.

4.6.3 Requirements for Auditing

As part of our audit model, authenticators are transfered toand stored at a third party.

We explore the storage and bandwidth resources that are required for version authentication. Four

months of file system traces were replayed over different snapshot intervals. At a snapshot, au-

thentication data is transfered to the third party, committing the file system to that version history.

Measurements were taken at day, hour and minute snapshot intervals. During each interval, the

number of file modification and number of authenticators generated were captured.

101

Figure 4.6 presents the size of authentication data generated over the simulation time for

the three snapshot intervals. Naturally, the longer the snapshot interval, the larger the number of

authenticators generated. However, authentication data is relatively small; even on a daily snapshot

interval, the largest transfer is 450K, representing about22,000 modified files. Authenticators gen-

erated by more frequent snapshot (hourly or per-minute) never exceed 50KB per transfer. Over the

course of four months, a total of 15.7MB of authentication data is generated on a daily basis from

801,473 modified files, 22.7MB on a hourly basis from 1,161,105 modified files, and 45.4MB on

a per-minute basis from 2,324,285 modified files. The size of authenticator transfer is invariant of

individual file size or total file system size; it is directly proportional to the number of file modi-

fications made in a snapshot interval. Therefore, the curvesin Figure 4.6 are identical to a figure

graphing the number of files modified over the same snapshot intervals.

4.7 Future Work

Conducting digital audits with version authenticators leaves work to be explored. We

are investigating authentication and auditing models thatdo not rely on trusted third parties. We

also discuss an entirely different model for authentication based on approximate MACs, which can

tolerate partial data loss.

4.7.1 Alternative Authentication Models

Having a third party time-stamp and store a file system’s authenticators may place undue

burden, in terms of storage capacity and management, on the third party. Fortunately, it is only one

possible model for a digital auditing system. We are currently exploring two other possible archi-

102

A

A’

Data

File System 3rd Party

A

A’

(a) Storage-less Third Party

A

Data

File System 1 File System 2 File System 3

A’

Data Data

B C

B’C’

(b) Cooperative Authentication

Figure 4.7: Alternative models for digital auditing.

tectures for managing authentication data; a storage-lessthird party and cooperative authentication.

In a storage-less third party model (Figure 4.7(a)) a file system would generate authenticators and

transmit them to a third party. Instead of storing them, the third party would MAC the authenticators

and return them to the file system. The file system stores both the original authenticators and those

authenticated by the third party. In this way, the third party stores nothing but signing keys, placing

the burden of authentication storage completely on the file system. When the file system is audited,

the auditor requests the signing keys from the third party, and performs two authentication steps:

first, checking the legitimacy of the stored authenticatorsand then checking the authenticity of the

data themselves.

This design has limitations. The scheme doubles the amount of authentication data trans-

fered. Additionally, because the third party keeps no record of any file, an attacker may delete an

entire file system without detection or maintain multiple file systems, choosing which file system

to present at audit time. Portions of the file system may not bedeleted or modified, because the

authenticators for version chains and directory hierarchies bind all data to the root authenticator.

A further variant (Figure 4.7(b)) groups peers of file systems together into a cooperative

103

ring, each storing their authentication data on an adjoining file system. A file system would store

the previous system’s authenticator in a log file, which is subsequently treated as data, resulting in

the authenticators being authenticated themselves. This authenticator for the log file is stored on an

adjoining system, creating a ring of authentication. This design relieves the burden on a single third

party from managing all authentication data and removes thesingle point of failure for the system.

This architecture also increases the complexity of tampering by a factor ofN, the number of links

of in the chain. In order to tamper with a file, an attacker mustundetectably modify the data, the

data’s authenticator, the authenticator’s authenticator, and so on. Because an adjoining file system’s

authenticators are kept in a single log file, only one authenticator is generated for that entire file

system, preventing a glut of authentication data.

4.7.2 Availability and Security

A verifiable file system may benefit from accessing only a portion of the data to establish

authenticity. Storage may be distributed across unreliable sites [32, 62], such that accessing it in

entirety is difficult or impossible. Also, if data from any portion of the file system are corrupted

irreparably, the file system may still be authenticated, whereas with standard authentication, altering

a single bit of the input data leads to a verification failure.

To audit incomplete data, we propose the use approximately-secure and approximately-

correct MAC (AMAC) introduced by Di Crescenzo et al. [31]. The system verifies authenticity

while tolerating a small amount of modification, loss, or corruption of the original data. The exact

level of tolerance can be tuned. A more detailed construct can be found in Appendix A.

104

We parallelize the AMAC construction to adapt it to file systems; in addition, we propose

to use PMAC as building block in the AMAC construction [31], to allow for incremental update.

The atom for the computation is a file system block, rather than a bit. The approximate security

and correctness then refer to the number of corrupted or missing blocks, rather than bits. We give

details of the algorithms for AMAC using PMAC in the Appendixbut we leave a formal treatment

of incremental AMACs for future work.

The chief benefit of using the AMAC construction over regularMAC constructions lies

in verification. Serial and parallel MACs require the entiremessage as input to verify authenticity.

Using AMAC, a portion of the original message can be ignored.This allows a weaker statement of

authenticity to be constructed even when some data are unavailable. The drawback of AMAC lies

in the reduction of authenticity. With AMAC, some data may beacceptably modified in the original

source.

105

Chapter 5

Conclusions

“We’re just gettin’ started!”
– Ace Frehley

Health care providers, private companies, and federal agencies are now subject to sweep-

ing regulations that affect the management of their electronic records. These include:

the Health Insurance Portability and Accountability Act (HIPAA), the Gramm-Leach-Bliley Act

(GLBA), the Federal Information Security Management Act (FISMA) and the Sarbanes-Oxley Act

(SOX). However, this legislation is unclear about which technologies companies are to implement

in order to be compliant. We distilled federal electronic record management legislation into four

technological categories: versioning with real-time access, secure deletion, digital privacy and digi-

tal authenticity. We address each of these categories with atechnological solution designed to meet

the requirements of electronic record legislation.

106

5.1 Summary of Contributions

We have implemented three contributions to the field of regulatory compliant storage.

The first, ext3cow, is a fully implemented open-source file system that provides users with a new

and intuitive interface for accessing data in the past. Ext3cow’s versioning interface supports many

features: file system snapshot, per-file versioning, version enumeration, and a continuous-time view

of changes to a file system. To provide these functions, ext3cow uses a copy-on-write scheme

and versioning metadata that incur little overhead and exhibit a small data footprint. All modifica-

tions made to ext3cow are encapsulated within the on-disk file system, avoiding the disadvantages

of kernel (virtual file system) or user-space implementations. Given these features, ext3cow sup-

ports traditional applications of versioning: easy accessto on-line backups; recovery from system

tampering; read-only, point-in-time snapshots for data mining; and, file-oriented deletion recovery.

However, ext3cow was specifically designed for the management of data in compliance with federal

electronic records legislation. As it stands, ext3cow meets the mandated versioning and auditability

requirements. In addition, ext3cow’s file organization is suitable for our implementation of secure

deletion.

To this end, we defined a model for secure deletion in storage systems that share data

between files, specifically, versioning file systems that comply with federal regulations. Our model

supports authenticated encryption, a unique feature for file systems. A data block is encrypted

and converted into a ciphertext block and a small stub. Securely overwriting the stub makes the

corresponding block irrecoverable.

We present two algorithms within this model. The first algorithm employs the all-or-

nothing transform so that securely overwriting a stub or any128 bits of a ciphertext securely deletes

107

the corresponding block. The second algorithm generates a random key per block in order to make

encryption non-repeatable. The first algorithm produces more compact stubs and supports a richer

set of deletion primitives. Whereas the second algorithm provides stronger privacy guarantees.

Both secure deletion algorithms meet our requirement of minimizing secure overwriting,

resulting in a 200 times speed-up over previous techniques.The addition of stub metadata and a

cryptographic device driver degrade performance minimally. We have implemented secure deletion

in the ext3cow versioning file system for Linux and in a securedevice driver.

Lastly, we have introduced a model for digital audits of versioning file systems that sup-

ports compliance with federally mandated data retention guidelines. In this model, a file system

commits to a version history by transmitting audit metadatato a third party. This prevents the owner

of the file system (or a malicious party) from modifying past data without detection. Our techniques

for the generation of audit metadata use incremental authentication methods that are efficient when

data modifications are fine grained, as in versioning file systems. Additionally, authentication meth-

ods are resilient to data loss or temporary outages. Experimental results show that incremental

authentication can perform up to 94% faster than traditional sequential authentication algorithms.

We have implemented incremental authentication in ext3cowand, like all technologies presented,

available at:www.ext3cow.com.

108

Appendix A

The AMAC Construct

The AMAC Construct (see [31]): Let M denote the message space wherem∈M is an

instance of a message, letd represent a distance function computed overM (such as the hamming

distance), and letk represent a secret key. Anapproximately-secure and approximately-correct MAC

for distance function dis represented by an authentication tag generation algorithmTag(m,k,d) that

computes the AMAC and returns the valuetag, and a verification algorithmVerify (m,k, tag,d) that

returnstrue if and only if tag=Tag(m,k,d).

An AMAC has (d, p,δ)−approximate-correctnessif tag=Tag(m,k,d), then with proba-

bility at leastpVerify (m′,k, tag,d) will return true if d(m,m′)≤ δ. An AMAC has(d,γ, t,q,ε)−approximate-

securityif an adversary operating in timet makesq queries to a tag generation oracle, the probability

that the adversary can construct a messagem′ such thatd(m,m′)≥ γ andVerify (m′,k, tag,d) returns

true, is at mostε.

Tag and Verify (see [31]):To construct an AMAC tag using theTag algorithm, perform the follow-

ing steps. Each AMAC also takes as input a counterct that seeds randomness in theTag andVerify

109

algorithms;ct should not be reused.

1. Setx1 = ⌈n/2cδ⌉, wheren is the size of the message in bits andc is a pre-specified

block size in bits.

2. Setx2 = ⌈10log(1/(1− p))⌉.

3. Write π(m⊕L) asm1|m2| . . . |m⌈n/c⌉, whereL is a random bit string andπ is a random

permutation both unique given the value ofct, and eachmi represents a block of sizec

of the manipulated message.

4. Using randomness based onct, createx2 message subsets,S1,S2, . . . ,Sx2, where each

subset is the concatenation ofx1 randomly chosen blocksmi .

5. For each subset, computeshi = H(Si,k), whereH can be implemented as a secure

MAC (formally it has to be a target collision resistant function) andk is retrieved from

randomness based on the seedct.

6. Return as the final tag,ct|sh1|sh2| . . . |shx2.

TheVerify algorithm performs steps 1 through 5 of the above algorithm on messagem′ acquiring

sub-tagssh′1,sh′2, . . . ,sh′x2
. Verify then returnstrue if and only if shi = sh′i for at leastαx2 sub tags,

whereα = 1−1/2
√

e−1/2e.

Constructing and verifying tags allows for the original input to be partially modified,

corrupted or even missing for up toδ bits, and still maintain approximate correctness and security

so long as the underlying functionH is a universal one-way hash function [82].

Update (Incremental AMAC): An AMAC based on a parallel MAC can be efficiently updated

when only a portion of the original message has changed; onlythe modified block is needed.

110

Our idea is to replaceH with a parallel MAC. We are assuming that it is possible to build

a (finite) family of universal one-way hash functions from the PMAC construction (or from other

deterministic parallel MAC constructions).

The Update algorithm takes as input an original message blockb, a modified message

block b′, the position of the modified block within the original inputdata sourcer, and the authen-

ticator tag being updatedct|sh1| . . . |shx2.

1. Setx1 = ⌈n/2cδ⌉, wheren is the size of the message in bits andc is a pre-specified

block size in bits.

2. Setx2 = ⌈10log(1/(1− p))⌉.

3. Useπ(m) to compute the permuted position of the modified block in the message.

4. Using randomness based onct, determine the subsets and positions within each subset

where blockb is used.

5. Since we are using PMAC, we can efficiently update each sub tag after computing each

subset and position whereb is placed. Computesh′i = shi⊕Y(b)⊕Y(b′), whereY(·) is

computed as in Section 4.4.1.

6. Return as the updated tag,ct|sh′1|sh′2| . . . |sh′x2
.

Initially computing the authenticator value for a portion of the file system using AMAC

requires the entire input source to be accessed, just as it would if using a conventional PMAC

algorithm. Computationally there is more work to be performed when computing each AMAC, but

memory operations are negligible when compared with disk I/O. Updating an incremental AMAC

requires the same number of disk accesses as updating a PMAC.

111

Bibliography

[1] C. Adams, P. Cain, D. Pinkas, and R. Zuccherato. IETF RFC 3161 time-stamp protocol (tsp).

IETF Network Working Group, 2001.

[2] R. Anderson. The dancing bear – a new way of composing ciphers. InProceedings of the

International Workshop on Security Protocols, April 2004.

[3] A. Azagury, M. E. Factor, and J. Satran. Point-in-time copy: Yesterday, today and tomorrow.

In Proceedings of the Goddard Conference on Mass Storage Systems and Technologies, pages

259–270, April 2002.

[4] C. Batten, K. Barr, A. Saraf, and S. Trepetin. pStore: A secure peer-to-peer backup system.

Technical Memo MIT-LCS-TM-632, Massachusetts Institute of Technology Laboratory for

Computer Science, October 2002.

[5] S. Bauer and N. B. Priyantha. Secure data deletion for Linux file systems. InProceedings of

the USENIX Security Symposium, August 2001.

[6] M. Bellare, O. Goldreich, and S. Goldwasser. Incremental cryptography and application to

virus protection. InProceedings of the ACM Symposium on the Theory of Computing, pages

45–56, 1995.

112

[7] M. Bellare, R. Guérin, and P. Rogaway. XOR MACs: New methods for message authentica-

tion using finite pseudorandom functions. InAdvances in Cryptology - Crypto’95 Proceed-

ings, volume 963, pages 15–28. Springer-Verlag, 1995. Lecture Notes in Computer Science.

[8] M. Bellare and C. Namprempre. Authenticated Encryption: Relations among notions and

analysis of the generic composition paradigm. InAdvances in Cryptology - Asiacrypt’00

Proceedings, volume 1976. Springer-Verlag, 2000. Lecture Notes in Computer Science.

[9] J. Black and P. Rogaway. A block-cipher mode of operationfor parallelizable message au-

thentication. InAdvances in Cryptology - Eurocrypt’02 Proceedings, volume 2332, pages

384 – 397. Springer-Verlag, 2002. Lecture Notes in ComputerScience.

[10] M. Blaze. A cryptographic file system forUNIX . In Proceedings of the ACM conference on

Computer and Communications Security, pages 9–16, November 1993.

[11] M. Blaze. High-bandwidth encryption with low-bandwidth smartcards. InFast Software

Encryption, volume 1039, pages 33–40, 1996. Lecture Notes in Computer Science.

[12] M. Blaze, J. Feigenbaum, and M. Naor. A formal treatmentof remotely keyed encryption. In

Advances in Cryptology – Eurocrypt’98 Proceedings, volume 1403, pages 251–265, 1998.

Lecture Notes in Computer Science.

[13] D. Boneh and R. Lipton. A revocable backup system. InProceedings of the USENIX Security

Symposium, pages 91–96, July 1996.

[14] V. Boyko. On the security properties of OAEP as an all-or-nothing transform. InAdvances in

Cryptology - Crypto’99 Proceedings, pages 503–518. Springer-Verlag, August 1999. Lecture

Notes in Computer Science.

113

[15] R. Bryant, R. Forester, and J. Hawkes. Filesystem performance and scalability in Linux

2.4.17. InProceedings of the USENIX Technical Conference, FREENIX Track, pages 259–

274, June 2002.

[16] R. Card, T. Y. Ts’o, and S. Tweedie. Design and implementation of the second extended file

system. InProceedings of the Amsterdam Linux Conference, 1994.

[17] A. Chervenak, V. Vellanki, and Z. Kurmas. Protecting file systems: A survey of backup

techniques. InProceedings of the Joint NASA and IEEE Mass Storage Conference, March

1998.

[18] J. Chow, B. Pfaff, T. Garfinkel, and M. Rosenblum. Shredding your garbage: Reducing data

lifetime through secure deallocation. InProceedings of the USENIX Security Symposium,

pages 331–346, August 2005.

[19] S. Chutani, O. T. Anderson, M. L. Kazar, B. W. Leverett, W. A. Mason, and R. N. Side-

botham. The Episode file system. InProceedings of the Winter USENIX Technical Confer-

ence, pages 43–60, 1992.

[20] U.S. Securities Exchange Commission. Commission guidance to broker-dealers on the use

of electronic storage media under the electronic signatures in global and national commerce

act of 2000 with respect to rule 17a-4(f). SEC Release No. 34-44238, May 2001.

[21] United States Congress. The Sarbanes-Oxley Act. 17 C.F.R. Parts 228, 229 and 249.

[22] United States Congress. The Health Insurance Portability and Accountability Act, 1996.

114

[23] United States Congress. The Health Insurance Portability and Accountability Act Privacy

Rule. 67 FR 53182, 1996.

[24] United States Congress. The Gramm-Leach-Bliley Act. 15 USC, Subchapter I,§ 6801-6809,

1999.

[25] United States Congress. Federal Information SecurityManagement Act. Public Law 107-

347, USC 44 Chapter 35, Subchapter III Information Security, 2002.

[26] B. Cornell, P. A. Dinda, and F. E. Bustamante. Wayback: Auser-level versioning file system

for Linux. In Proceedings of the USENIX Technical Conference, FREENIX Track, pages

19–28, June 2004.

[27] Digital Equipment Corporation.Vax/VMS System Software Handbook, 1985.

[28] Symantec Corporation. Understanding and complying with FISMA. www.symantec.com,

February 2004.

[29] Symantec Corporation. SOX compliance: Understandinghow security, systems and

storage management solutions help meet the corporate demand for SOX compliance.

www.symantec.com, January 2005.

[30] G. Di Crescenzo, N. Ferguson, R. Impagliazzo, and M. Jakobsson. How to forget a secret. In

Proceedings of the Symposium on Theoretical Aspects of Computer Science, volume 1563,

pages 500–509. Springer-Verlag, 1999. Lecture Notes in Computer Science.

[31] G. Di Crescenzo, R. Graveman, R. Ge, and G. Arce. Approximate message authentication

115

and biometric entity authentication. InProceedings of Financial Cryptography and Data

Security, February-March 2005.

[32] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area cooperative storage

with CFS. InProceedings of the ACM Symposium on Operating Systems Principles (SOSP),

pages 202–215, October 2001.

[33] DataMirror. Achieving Sarbanes-Oxley compliance with real-time data integration, protec-

tion and monitoring. www.datamirror.com, September 2003.

[34] Deloitte and LLP Touche. Leveraging internal control to build a better business: A response

to Sarbanes-Oxley sections 302 and 404. www.deloitte.com,April 2003.

[35] Y. Dodis and J. An. Concealment and its applications to authenticated encryption. InAd-

vances in Cryptology – Eurocrypt’03 Proceedings, volume 2656, 2003. Lecture Notes in

Computer Science.

[36] R. Dowdeswell and J. Ioannidis. The CryptoGraphic diskdriver. In Proceedings of the

USENIX Technical Conference, FREENIX Track, pages 179–186, June 2003.

[37] EMC Corporation.EMC TimeFinder Product Description Guide, 1998.

[38] P. Cederqvistet. al. Version Management with CVS. Network Theory Limited, 2003.

http://www.network-theory.co.uk/cvs/manual/.

[39] D. Farmer and W. Venema.Forensic Discovery. Addison-Wesley, 2004.

[40] K. Fu, M. F. Kasshoek, and D. Mazières. Fast and secure distributed read-only file system.

ACM Transactions on Computer Systems, 20(1):1–24, 2002.

116

[41] S. L. Garfinkel and A. Shelat. Remembrance of data passed: A study of disk sanitation

practices.IEEE Security and Privacy, 1(1):17–27, 2003.

[42] D. K. Gifford, R. M. Needham, and M. D. Schroeder. The Cedar file system.Communications

of the ACM, 31(3):288–298, March 1988.

[43] R. J. Green, A. C. Baird, and J. Christopher. Designing afast, on-line backup system for a

log-structured file system.Digital Technical Journal, 8(2):32–45, 1996.

[44] D. Grune, B. Berliner, and J. Polk. Concurrent versioning system (CVS).

http://www.cvshome.org/, 2003.

[45] P. Gutmann. Secure deletion of data from magnetic and solid-state memory. InProceedings

of the USENIX Security Symposium, pages 77–90, July 1996.

[46] P. Gutmann. Software generation of practically strongrandom numbers. InProceedings of

the USENIX Security Symposium, pages 243–257, January 1998.

[47] P. Gutmann. Data remanence in semiconductor devices. In Proceedings of the USENIX

Security Symposium, pages 39–54, August 2001.

[48] J. Hagerty. Sarbanes-Oxley compliance spending will exceed $5b in 2004.AMR Research

Outlook, December 2004.

[49] R. Hagman. Reimplementing the Cedar file system using logging and group commit. In

Proceedings of the ACM Symposium on Operating systems principles (SOSP), pages 155–

162, 1987.

117

[50] E. Haubert, J. Tucek, L. Brumbaugh, and W. Yurcik. Tamper-resistant storage techniques for

multimedia systems. InIS&T/SPIE Symposium Electronic Imaging Storage and Retrieval

Methods and Applications for Multimedia (EI121), pages 30–40, January 2005.

[51] Hitachi, Ltd. Hitachi ShadowImage, June 2001.

[52] D. Hitz, J. Lau, and M. Malcom. File system design for an NFS file server appliance. In

Proceedings of the Winter USENIX Technical Conference, pages 235–246, January 1994.

[53] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M. Satyanarayanan, R. N. Side-

botham, and M. J. West. Scale and performance in a distributed file system.ACM Transac-

tions on Computer Systems, 6(1):51–81, February 1988.

[54] N. C. Hutchinson, S. Manley, M. Federwisch, G. Harris, D. Hitz, S. Kleiman, and

S. O’Malley. Logical vs. physical file system backup. InProceedings of the USENIX Sym-

posium on Operating System Design and Implementation (OSDI), pages 239–250, February

1999.

[55] Kahn Consulting Inc. The Sarbanes-Oxley Act: Understanding the implications for informa-

tion and records management. www.KahnConsultingInc.com.

[56] Kahn Consulting Inc. An evaluation of the Sun Microsystems, Inc.STOREEDGEcompliance

archiving system. www.KahnConsultingInc.com, January 2005.

[57] M. Jakobsson, J. Stern, and M. Yung. Scramble all. Encrypt small. InFast Software Encryp-

tion, volume 1636, 1999. Lecture Notes in Computer Science.

118

[58] J. E. Johnson and W. A. Laing. Overview of the Spiralog file system. Digital Technical

Journal, 6(1):51–81, 1996.

[59] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu. Plutus: Scalable secure file

sharing on untrusted storage. InProceedings of the USENIX Conference on File and Storage

Technologies (FAST), pages 29–42, March 2003.

[60] P. Killbridge. The cost of HIPAA compliance. New England Journal of Medicine,

348(15):1423–1424, 2003.

[61] S. R. Kleiman. Vnodes: An architecture for multiple filesystem in SUN UNIX. InProceed-

ings of the Summer USENIX Technical Conference, pages 238–247, 1986.

[62] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummandi,

S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao. OceanStore: An architecture

for global-scale persistent storage. InProceedings of the ACM Conference on Architecture

Support for Programming Languages and Operating Systems (ASPLOS), pages 190–201,

November 2000.

[63] L. Lamport. Password authentication with insecure communication.Communications of the

ACM, 24(11):770–772, 1981.

[64] M. Luby and C. Rackoff. How to construct pseudorandom permutations from pseudorandom

functions.SIAM Journal on Computing, 17(2):373–386, April 1988.

[65] J .P. Lucci. Enron–the bankruptcy heard around the world and the international ricochet of

Sarbanes-Oxley. 67 Alb. L. Rev. 211, 2003.

119

[66] J. P. MacDonald, P. N. Hilfinger, and L. Semenzato. PRCS:The project revision control sys-

tem. InProceedings of System Configuration Management, volume 1439. Springer-Verlag,

July 1998. Lecture Notes in Computer Science.

[67] J. R. Macey. Pox on both your houses: Enron, Sarbanes-Oxley and the debate concerning the

relative efficacy of mandatory versus enabling rules. 81 Wash. U. L.Q. 329, 333, 2003.

[68] P. Maniatis and M. Baker. Enabling the archival storageof signed documents. InProceedings

of the USENIX Conference on File and Storage Technologies (FAST), pages 31–46, January

2002.

[69] K. McCoy. VMS File System Internals. Digital Press, 1990.

[70] M. K. McKusick. Running “fsck” in the background. InProceedings of the BSDCon 2002

Conference, pages 55–64, February 2002.

[71] M. K. McKusick, K. Bostic, M. J. Karels, and J. S. Quarterman. The Design and Implemen-

tation of the 4.4BSD Operating System. Addison Wesley, 1996.

[72] M. K. McKusick and G. Ganger. Soft updates: A technique for eliminating most synchronous

writes in the fast filesystem. InProceedings of the USENIX Technical Conference, FREENIX

Track, pages 1–17, June 1999.

[73] M. K. McKusick, W. N. Joy, J. Leffler, and R. S. Fabry. A fast file system forUNIX . ACM

Transactions on Computer Systems, 2(3):181–197, August 1984.

[74] S. Micali. Efficient certificate revocation. TechnicalReport MIT/LCS/TM-542b, Mas-

sachusetts Institute of Technology, 1996.

120

[75] Sun Microsystems.NFS: Network file system protocol specification. Network Working

Group, Request for Comments (RFC 1094), March 1989. Version2.

[76] J. Monroe. Emerging solutions for content storage. Presentation at PlanetStorage, 2004.

[77] J. Morris. The Linux kernel cryptographic API.Linux Journal, (108), April 2003.

[78] J. H. Morris, M. Satyanarayanan, M. H. Conner, J. H. Howard, D. S. H. Rosenthal, and F. D.

Smith. Andrew: A distributed personal computing environment. Communications of the

ACM, 29(3):184–201, March 1986.

[79] L. Moses. An introductory guide to TOPS-20. Technical Report TM-82-22, USC/Information

Sciences Institute, 1982.

[80] K.-K. Muniswamy-Reddy, C. P. Wright, A. Himmer, and E. Zadok. A versatile and user-

oriented versioning file system. InProceedings of the USENIX Conference on File and Stor-

age Technologies (FAST), pages 115–128, March 2004.

[81] A. Muthitacharoen, B. Chen, and D. Mazieres. A low-bandwidth network file system. In

Proceedings of the ACM Symposium on Operating Systems Principles (SOSP), pages 174–

187, October 2001.

[82] M. Naor and M. Yung. Universal one-way hash functions and their cryptographic applica-

tions. InProceedings of the ACM Symposium on Theory of Computing, pages 33–43, May

1989.

[83] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The design and implementation of Zap: A

121

system for migrating computing environments. InProceedings of the USENIX ymposium on

Operating Systems Design and Implementation (OSDI), pages 361–376, 2002.

[84] S. Patil, A. Kashyap, G. Sivathanu, and E. Zadok. I3FS: An in-kernel integrity checker and in-

trusion detection file system. InProceedings of the Large Installation System Administration

Conference (LISA), pages 67–78, November 2004.

[85] H. Patterson, S. Manley, M. Federwisch, D. Hitz, S. Kleiman, and S. Owara. SnapMirror: File

system based asynchronous mirroring for disaster recovery. In Proceedings of the USENIX

Conference on File and Storage Technologies (FAST), pages 117–129, January 2002.

[86] Z. Peterson and R. Burns. Ext3cow: A time-shifting file system for regulatory compliance.

ACM Transactions on Storage, 1(2):190–212, 2005.

[87] Z. N. J. Peterson, R. Burns, J. Herring, A. Stubblefield,and A. Rubin. Secure deletion for

a versioning file system. InProceedings of the USENIX Conference on File And Storage

Technologies (FAST), pages 143–154, December 2005.

[88] Z. N. J. Peterson, R. Burns, and A. Stubblefield. Limiting liability in a federally compliant file

system. InProceedings of the PORTIA Workshop on Sensitive Data in Medical, Financial,

and Content Distribution Systems, July 2004.

[89] D. Presotto. Plan 9. InProceedings of the Workshop on Micro-kernels and Other Kernel

Architectures, pages 31–38, April 1992.

[90] S. Quinlan. A cached worm file system.Software – Practice and Experience, 21(12):1289–

1299, December 1991.

122

[91] S. Quinlan and S. Dorward. Venti: A new approach to archival storage. InProceedings of the

USENIX Conference on File And Storage Technologies (FAST), pages 89–101, January 2002.

[92] S. Ranade. The time traveling file manager: Interface design and semantics. Technical report,

The Johns Hopkins University, 2005.

[93] KCI Research. New information management rules neededfor audit, investigations, and

litigation. www.KahnConsultingInc.com, September 2004.

[94] R. L. Rivest. All-or-nothing encryption and the package transform. InProceedings of the

Fast Software Encryption Conference, volume 1267, pages 210–218, 1997. Lecture Notes in

Computer Science.

[95] M. J. Rochkind. The source code control system.IEEE Transactions on Software Engineer-

ing, 1(4):364–370, December 1975.

[96] P. Rogaway, M. Bellare, J. Black, and T. Krovet. OCB: A block-cipher mode of operation for

efficient authenticated encryption. InProceedings of the ACM Conference on Computer and

Communications Security, pages 196–205, November 2001.

[97] D. Roselli and T. E. Anderson. Characteristics of file system workloads. Research report,

University of California, Berkeley, June 1996.

[98] M. Rosenblum and J. K. Ousterhout. The design and implementation of a log-structured file

system.ACM Transactions on Computer Systems, 10(1):26–52, February 1992.

[99] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. Design and implementation

123

of the Sun network file system. InProceedings of the Summer USENIX Technical Conference,

pages 119–130, June 1985.

[100] D. J. Santry, M. J. Feeley, N. C Hutchinson, and A. C. Veitch. Elephant: The file system that

never forgets. InWorkshop on Hot Topics in Operating Systems, pages 2–7, 1999.

[101] D. J. Santry, M. J. Feeley, N. C. Hutchinson, A. C. Veitch, R. W. Carton, and J. Ofir. Deciding

when to forget in the Elephant file system. InProceedings of ACM Symposium on Operating

Systems Principles (SOSP), pages 110–123, December 1999.

[102] B. Schneier and J. Kelsey. Secure audit logs to supportcomputer forensics.ACM Transac-

tions on Information Systems Security, 2(2):159–176, 1999.

[103] M. Scholl, R. Kissel, S. Skolochenko, and X. Li. Guidelines for media sanitization. NIST

Special Publication 800-88, February 2006.

[104] M. D. Schroeder, D. K. Gifford, and R. M. Needham. A caching file system for a program-

mer’s workstation. InProceedings of the ACM Symposium on Operating Systems Principles

(SOSP), pages 25–34, 1985.

[105] M. Seltzer, K. Bostic, M. K. McKusick, and Carl Staelin. An implementation of a log-

structured file system forUNIX . In Proceedings of the Winter USENIX Technical Conference.

[106] A. Shamir. How to share a secret.Communications of the ACM, 22(11):612–613, 1979.

[107] J. S. Shapiro and J. Vanderburgh. CPCMS: A configuration management system based on

cryptographic names. InProceedings of the USENIX Technical Conference, FREENIX Track,

pages 203–216, 2002.

124

[108] M. Sivathanu, L. Bairavasundatam, A. C. Arpaci-Dussaeu, and R. H. Arpaci-Dusseau. Life

or Death at Block-Level. InProceedings of the USENIX Symposium on Operating Systems

Design and Implementation (OSDI), pages 379–394, December 2004.

[109] K. A. Smith and M. I. Seltzer. File system aging – Increasing the relevance of file system

benchmarks. InProceedings of the ACM SIGMETRICS Conference, pages 203–213, June

1997.

[110] Richard T. Snodgrass, editor.The TSQL2 Temporal Query Language. Kluwer, 1995.

[111] C. A. N. Soules, G. R. Goodson, J. D. Strunk, and G. R. Ganger. Metadata efficiency in

versioning file systems. InProceedings of the USENIX Conference on File and Storage

Technologies (FAST), pages 43–58, March 2003.

[112] J. D. Strunk, M. L. Scheinholtz G. R. Goodson, C. A. N. Soules, and G. R. Ganger. Self-

securing storage: Protecting data in compromised systems.In Proceedings of the USENIX

Symposium on Operating Systems Design and Implementation (OSDI), pages 165–180, Oc-

tober 2000.

[113] A. Stubblefield, J. Ioannidis, and A. D. Rubin. Using the Fluhrer, Mantin, and Shamir attack

to break WEP. InProceedings of the Network and Distributed Systems Security Symposium,

pages 17–22, February 2002.

[114] A. S. Tannenbaum.Operating Systems: Design and Implementation. Prentice-Hall Inc.,

Englewood Cliffs, NJ 07632, 1987.

[115] W. F. Tichy. RCS: A system for version control.Software – Practice and Experience,

15(7):637–654, July 1985.

125

[116] T. Y. Ts’o and S. Tweedie. Planned extensions to the Linux ext2/ext3 filesystem. InProceed-

ings of the USENIX Technical Conference, FREENIX Track, pages 235–243, June 2002.

[117] J. Viega and G. McGraw.Building Secure Software. Addison-Wesley, 2002.

[118] M. Waldman, A. D. Rubin, and L. F. Cranor. Publius: A robust, tamper-evident, censorship-

resistant, Web publishing system. InProceedings of the USENIX Security Symposium, pages

59–72, August 2000.

[119] X. Wang, Y. L. Yin, and H. Yu. Finding collisions in the full SHA-1. In Advances in Cryp-

tology - Crypto’05 Proceedings. Springer-Verlag, August 2005. Lecture Notes in Computer

Science. To appear.

[120] H. Weatherspoon, C. Wells, and J. Kubiatowicz. Namingand integrity: Self-verifying data

in peer-to-peer systems. InProceedings of the Workshop on Future Directions in Distributed

Computing, pages 142–147, June 2002.

[121] C. Wright, J. Dave, and E. Zadok. Cryptographic file systems performance: What you don’t

know can hurt you. InProceedings of the IEEE Security in Storage Workshop (SISW), pages

47–61, October 2003.

[122] C. P. Wright, M. Martino, and E. Zadok. NCryptfs: A secure and convenient cryptographic

file system. InProceedings of the USENIX Technical Conference, pages 197–210, June 2003.

[123] E. Zadok and I. Bădulescu. A stackable file system interface for Linux. InLinuxExpo Con-

ference Proceedings, pages 141–151, May 1999.

126

[124] E. Zadok and J. Nieh. FiST: A language for stackable filesystems. InProceedings of the

USENIX Technical Conference, pages 55–70, June 2000.

[125] J-G. Zhu, Y. Luo, and J. Ding. Magnetic force microscopy study of edge overwrite charac-

teristics in thin film media.IEEE Transaction on Magnetics, 30(6):4242–4244, 1994.

127

Vita

Zachary Nathaniel Joseph Peterson was born February 11, 1978 in Akron, Ohio.

At the age of four, his family moved to Escondido, California, where he completed his

basic and high school education. In 1996, he began attendingthe University of California

at Santa Cruz. He graduated four years later with a Bachelor of Science in Computer

Engineering with liberal arts emphasis in music. He stayed on at Santa Cruz to complete a

Master of Science in Computer Science under the guidance of Prof. Darrell Long. The title

of his Master’s thesis wasData Placement for Copy-on-Write Using Virtual Contiguity.

In 2002, Zachary matriculated at The Johns Hopkins University. While there, he earned a

Masters of Science in Security Informatics from the Johns Hopkins Institute for Security

Informatics under the advisement of Avi Rubin. He successfully defended his dissertation

in October of 2006, completing the requirements for a Doctorof Philosophy in Computer

Science. His adviser was Randal Burns.

128

